留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同合成方法制备ZnxCe2-yZryO4/SAPO-34催化剂及其合成气制低碳烯烃催化性能的研究

罗耀亚 王森 郭淑佳 原凯 王浩 董梅 秦张峰 樊卫斌 王建国

罗耀亚, 王森, 郭淑佳, 原凯, 王浩, 董梅, 秦张峰, 樊卫斌, 王建国. 不同合成方法制备ZnxCe2-yZryO4/SAPO-34催化剂及其合成气制低碳烯烃催化性能的研究[J]. 燃料化学学报(中英文), 2020, 48(5): 594-600.
引用本文: 罗耀亚, 王森, 郭淑佳, 原凯, 王浩, 董梅, 秦张峰, 樊卫斌, 王建国. 不同合成方法制备ZnxCe2-yZryO4/SAPO-34催化剂及其合成气制低碳烯烃催化性能的研究[J]. 燃料化学学报(中英文), 2020, 48(5): 594-600.
LUO Yao-ya, WANG Sen, GUO Shu-jia, YUAN Kai, WANG Hao, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Study on different synthesis methods of ZnxCe2-yZryO4/SAPO-34 catalyst and its catalytic performance in syngas to low-carbon olefins[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 594-600.
Citation: LUO Yao-ya, WANG Sen, GUO Shu-jia, YUAN Kai, WANG Hao, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Study on different synthesis methods of ZnxCe2-yZryO4/SAPO-34 catalyst and its catalytic performance in syngas to low-carbon olefins[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 594-600.

不同合成方法制备ZnxCe2-yZryO4/SAPO-34催化剂及其合成气制低碳烯烃催化性能的研究

基金项目: 

国家自然科学基金 21802157

国家自然科学基金 21773281

山西省自然科学基金 201901D211581

详细信息
    通讯作者:

    王森E-mail:wangsen@sxicc.ac.cn.

    王浩E-mail:wanghao@sxicc.ac.cn

  • 中图分类号: O643.36

Study on different synthesis methods of ZnxCe2-yZryO4/SAPO-34 catalyst and its catalytic performance in syngas to low-carbon olefins

Funds: 

the National Natural Science Foundation of China 21802157

the National Natural Science Foundation of China 21773281

the Natural Science Foundation of Shanxi Province of China 201901D211581

  • 摘要: 通过溶胶凝胶法、水热法、共沉淀法合成了不同的ZnxCe2-yZryO4金属氧化物,并对其结构性质进行了XRD、BET、HRTEM、CO-TPD、Raman以及XPS等多种技术表征。考察不同合成方法(溶胶-凝胶法、共沉淀法和水热法)所制备的ZnxCe2-yZryO4金属氧化物形貌、晶粒粒径和氧空穴浓度变化情况,及其对合成气制低碳烯烃性能的影响。结果表明,ZnxCe2-yZryO4固溶体的形貌、暴露晶面、晶粒粒径和表面氧空穴浓度强烈依赖于合成方法。在300 ℃、1.0 MPa条件下,采用溶胶-凝胶法制备的ZnxCe2-yZryO4与SAPO-34组成的双功能催化剂具有最高的低碳烯烃(C2-4=)选择性(79.5%),同时甲烷和CO2的选择性分别仅为5.5%和10.7%。实现了低温低压条件直接转化合成气制低碳烯烃,同时大幅降低了甲烷和CO2的释放。
  • 图  1  不同合成方法制备的ZnxCe2-yZryO4固溶体的XRD谱图

    Figure  1  XRD patterns of the ZnxCe2-yZryO4 solid solutions prepared with different methods

    图  2  不同合成方法制备ZnxCe2-yZryO4的TEM照片和粒径分布

    (a): sol-gel method; (b): hydrothermal method; (c): co-precipitation method

    Figure  2  TEM images and size distributions (estimated by counting 100 NPs) of the ZnxCe2-yZryO4 solid solutions prepared with different methods

    图  3  不同合成方法制备的ZnxCe2-yZryO4固溶体氮气吸附-脱附曲线以及相应的孔径分布

    Figure  3  N2 absorption-desorption isotherms (a) and corresponding pore size distribution (b) of the ZnxCe2-yZryO4 solid solutions prepared with different methods

    图  4  不同合成方法制备的ZnxCe2-yZryO4/ SAPO-34双功能催化剂上CO转化率与产物分布

    Figure  4  CO conversion and product distribution over the ZnxCe2-yZryO4/SAPO-34 dual functional catalyst

    图  5  不同合成方法制备的ZnxCe2-yZryO4拉曼光谱谱图

    Figure  5  Raman spectra of the ZnxCe2-yZryO4 catalyst prepared with different methods

    图  6  不同合成方法制备ZnxCe2-yZryO4固溶体的O 1s XPS谱图(a)以及Ce 3d XPS谱图(b)

    Figure  6  O 1s XPS spectra (a) and Ce 3d XPS spectra (b) of the ZnxCe2-yZryO4 solid solutions prepared with different methods

    图  7  不同合成方法制备ZnxCe2-yZryO4固溶体的CO-TPD谱图

    Figure  7  CO-TPD profiles of the ZnxCe2-yZryO4 solid solutions prepared with different methods

    表  1  不同合成方法制备的ZnxCe2-yZryO4/SAPO-34合成气制烯烃反应产物分布和CO转化率

    Table  1  CO conversion and product distribution of the ZnxCe2-yZryO4/SAPO-34 dual functional catalysts

    Sample Selectivitys/% CO conversion x/% CO2 selectivity s/%
    C2-4= C2-40 CH4 others
    ZnCeZr(s)a /SAPO-34 79.5 4.1 5.5 10.9 6.4 10.7
    ZnCeZr(h)b /SAPO-34 77.0 3.0 6.4 13.5 5.4 4.5
    ZnCeZr(c)c/SAPO-34 73.1 9.4 6.7 10.8 6.6 12.6
    a: sol-gel method; b: hydrothermal method; c: co-precipitation method
    下载: 导出CSV

    表  2  不同合成方法制备的ZnxCe2-yZryO4表面氧空穴浓度

    Table  2  Concentration of surface oxygen vacancies of the ZnxCe2-yZryO4 catalyst prepared with different methods

    Sample Ov/Ototal (%)a Odefect(%)b Ce3+/(Ce4++Ce3+) (%)c
    ZnCeZr(sol-gel) 23.8% 29.7% 30.0%
    ZnCeZr(hydrothermal) 15.9% 25.5% 24.5%
    ZnCeZr(co-precipitation) 15.7% 27.7% 25.3%
    a: the Ov/Ototal ratio was obtained from the Raman spectra by the equation: Ov/Ototal=I630/(I475+I630), whereI630 andI475 correspond to the intensity of peaks at 600 and 475cm-1, respectively;
    b: the Odefect(Ovacancy) concentration was calculated from the O 1s XPS spectra by the equation: concentration of Odefect=IOdefect/(IOdefect+IOlattice), whereIOdefect andIOlattice correspond to the intensity of peaks at 530.5 and 529.5eV, which are assigned to Ovacancy(Odefect) and lattice oxygen species (Olattice) respectively;
    c: the proportion of Ce3+ (P(Ce3+)) on the surface was calculated from the Ce 3d XPS spectra by the equation:$p\left( {{\rm{C}}{{\rm{e}}^{3 + }}} \right) = \frac{{I\left( {{{\rm{u}}_1}} \right) + I\left( {{{\rm{v}}_1}} \right)}}{{\sum\limits_i {\left( {I\left( {{{\rm{u}}_i}} \right) + I\left( {{{\rm{v}}_i}} \right)} \right)} }} $whereI(x) represents the intensity ofu0 (900.9eV) andv0 (882.5eV), u1(903.2eV) andv1 (884.7eV), u2 (907.3eV) andv2 (888.8eV), andu3 (916.6eV) andv3 (898.4eV) signals, respectively, in Ce 3d XPS spectra
    下载: 导出CSV
  • [1] TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas:A review[J]. ACS Catal, 2013, 3(9):2130-2149. doi: 10.1021/cs4003436
    [2] WANG W, WANG S P, MA X B, GONG J L. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem Soc Rev, 2011, 40(7):3703-3727. doi: 10.1039/c1cs15008a
    [3] ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon:from CO2 to chemicals, materials, and fuels. technological use of CO2[J]. Chem Rev, 2014, 114(3):1709-1742. doi: 10.1021/cr4002758
    [4] GALVIS H M T, BITTER J H, DAVIDIAN T, MATTHIJS R, DUGULAN A L, JONG K P D. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. JACS, 2012, 134(39):16207-16215. doi: 10.1021/ja304958u
    [5] CHENG K, KANG J C, KING D L, SUBRAMANIAN V Y, ZHOU C, ZHANG Q H, WANG Y. Advances in catalysis for syngas conversion to hydrocarbons[J]. Adv Catal, 2017, 60:125-208. https://www.sciencedirect.com/science/article/abs/pii/S0360056417300032
    [6] JIAO F, LI J, PAN X L, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M. Selective conversion of synthesis gas into lower olefins[J]. Science, 2016, 351(6277):1065-1068. doi: 10.1126/science.aaf1835
    [7] CHENG K, GU B, LIU X, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas to lower olefins:Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016, 55(15):4725-4728. doi: 10.1002/anie.201601208
    [8] ZHU Y F, PAN X L, JIAO F, LI J, YANG J H, DING M Z, HAN Y, LIU Z, BAO X H. Role of manganese oxide in syngas conversion to light olefins[J]. ACS Catal, 2017, 7:2800-2804. doi: 10.1021/acscatal.7b00221
    [9] LIU X L, ZHOU W, YANG Y, CHENG K, KANG J C, ZHANG L, ZHANG G Q, MIN X J, ZHANG Q H, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci, 2018, 9(20):4708-4718. doi: 10.1039/C8SC01597J
    [10] SU J J, WANG D, Wang Y D, ZHOU H B, LIU C, LIU S, WANG C M, YANG W M, XIE Z K, HE M Y. Direct conversion of syngas to light olefins over Zr-In2O3 and SAPO-34 bifunctional catalysts:Design of oxide component and construction of reaction network[J]. ChemCatChem, 2018, 10:1536-1541. doi: 10.1002/cctc.201702054
    [11] REDDY B M, KHAN A, LAKSHMANAN P, AOUINE M, LORIDANT S, VOLTA J C. Structural characterization of nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 catalysts by XRD, Raman, and HREM techniques[J]. J Phys Chem B, 2005, 109(8):3355-3363. doi: 10.1021/jp045193h
    [12] CHEN A L, ZHOU Y, TA N, LI Y, SHEN W J. Redox properties and catalytic performance of ceria-zirconia nanorods[J]. Catal Sci Technol, 2015, 5(8):4184-4192. doi: 10.1039/C5CY00564G
    [13] ZHANG P P, TAN L, YANG G H, TSUBAKI N. One-pass selective conversion of syngas to paraxylene[J]. Chem Sci, 2017, 8(12):7941-7946. doi: 10.1039/C7SC03427J
    [14] ZHOU C, SHI J Q, ZHOU W, CHENG K, ZHANG Q H, KANG J C, WANG Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catal, 2020, 10(1):302-310. doi: 10.1021/acscatal.9b04309
    [15] ZHANG Z X, WANG Y H, LU J M, ZHANG C F, WANG M, LI M R, LIU X B, WANG F. Conversion of isobutene and formaldehyde to diol using praseodymium-doped CeO2 catalyst[J]. ACS Catal, 2016, 8:2635-2644. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7215bbd058fcd6c7e9a0a51dfd4e9ec5
    [16] LIANG F L, YU Y, ZHOU W, XU X Y, ZHU Z H. Highly defective CeO2 as a promoter for efficient and stable water oxidation[J]. J Mater Chem A, 2015, 3(2):634-640. doi: 10.1039/C4TA05770H
    [17] PIUMETTI M, BENSAID S, RUSSO N, FINO D. Nanostructured ceria-based catalysts for soot combustion:Investigations on the surface sensitivity[J]. Appl Catal B:Environ, 2015, 165:742-751. doi: 10.1016/j.apcatb.2014.10.062
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  80
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-19
  • 修回日期:  2020-03-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-05-10

目录

    /

    返回文章
    返回