留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气化中煤灰熔点和黏度预测模型

郑常昊 王倩 张建胜

郑常昊, 王倩, 张建胜. 气化中煤灰熔点和黏度预测模型[J]. 燃料化学学报(中英文), 2016, 44(5): 521-527.
引用本文: 郑常昊, 王倩, 张建胜. 气化中煤灰熔点和黏度预测模型[J]. 燃料化学学报(中英文), 2016, 44(5): 521-527.
ZHENG Chang-hao, WANG Qian, ZHANG Jian-sheng. Prediction model of ash fusion temperature and viscosity in coal gasification[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 521-527.
Citation: ZHENG Chang-hao, WANG Qian, ZHANG Jian-sheng. Prediction model of ash fusion temperature and viscosity in coal gasification[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 521-527.

气化中煤灰熔点和黏度预测模型

基金项目: 

国家自然科学基金 51176097

详细信息
    通讯作者:

    张建胜, Tel: 13671285753, E-mail: zhang-jsh@tsinghua.edu.cn

  • 中图分类号: TQ533

Prediction model of ash fusion temperature and viscosity in coal gasification

Funds: 

the National Natural Science Foundation of China 51176097

  • 摘要: 根据煤灰中硅铝含量及硅铝比对煤灰进行分类研究, 构建了灰熔融点和黏度与组分关系的优化模型, 并对宽组分范围的煤灰熔点、黏度关系进行探讨。获得了更加精确的灰熔点预测模型, 全液相温度模型预测误差为±40 ℃, 实验值和预测值的标准误差为25 ℃。采用修正的Urbain模型和Roscoe模型相结合, 模型预测值和实验值吻合较好, 低黏度下对数黏度的预测值和实验值误差为±0.1;高黏度下黏度的预测值和实验值误差为±0.2。结果表明, 基于煤灰组分分类的拟合结果优于涵盖宽组分的模型。
  • 图  1  硅铝含量(SiO2+Al2O3) 与灰熔点关系

    Figure  1  Relationship between FT (ash fusion temperature) and (SiO2+Al2O3) content

    图  2  酸碱比(A/B) 与灰熔点关系

    Figure  2  Relationship between FT and acid basic ratio (A/B)

    图  3  灰熔点、t25关系图

    Figure  3  Relationship between FT and t25

    图  4  全液相温度和灰熔点线性拟合

    Figure  4  Linear fit of FT and liquidus temperature

    (a): high silica and alumina coal ash; (b): medium silica and alumina coal ash; (c): low silica and alumina coal ash; (d): high silica alumina ratio coal ash

    图  5  灰熔点预测模型比较

    Figure  5  Comparison of FT prediction models

    图  6  相对黏度与固相比例拟合关系图

    Figure  6  Linear fit of relative viscosity and solid phase ration

    图  7  熔渣黏度模型预测值和实验值对比

    Figure  7  Comparison of slag viscosity between model results and experiment ones

    表  1  煤灰样品中氧化物含量变化范围

    Table  1  Content range of oxides in coal ash samples

    Content w/% SiO2/Al2O3
    SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2
    Minimum 8.2 5.67 1.35 0.28 0.34 0.04 0.04 0.15 1.06
    Maximum 66.7 37.57 41.88 46.88 13.06 3.9 4.73 3.09 6.94
    下载: 导出CSV

    表  2  煤灰分类依据

    Table  2  Classification of coal ash

    Classification Accordance of classification Sample numbers
    High silica and alumina coal ash SiO2+Al2O3 > 80% 30
    Medium silica and alumina coal ash 60% < SiO2+Al2O3 < 80% 47
    Low silica and alumina coal ash SiO2+Al2O3 < 60% 17
    High silica alumina ratio coal ash SiO2/Al2O3 > 3 14
    下载: 导出CSV

    表  3  熔点预测模型

    Table  3  Ash fusion temperature prediction model

    Ash classification Viscosity prediction equation Correlation coefficient
    High silica and alumina coal ash FT=0.962tliq-58.5 0.91
    Medium silica and alumina coal ash FT=0.677tliq+298.5 0.93
    Low silica and alumina coal ash FT=0.823tliq+111.4 0.90
    High silica alumina ratio coal ash FT=0.925tliq+241 0.92
    下载: 导出CSV

    表  4  灰熔点预测能力对比

    Table  4  Prediction accuracy of ash fusion temperatures

    Model Correlation coefficient Standard deviation t/℃
    This research 0.91, 0.93, 0.90, 0.92 25
    Jak 0.76 64
    Chen wenmin - 47
    下载: 导出CSV

    表  5  黏度模型灰成分

    Table  5  Coal ash components in viscosity model

    Coal ash Components content w/% SiO2/Al2O3
    SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 SiO2+Al2O3
    Huangkuang 56.34 31.23 2.65 2.17 0.70 1.62 0.67 1.16 87.57 1.80
    Bai 56.30 31.22 3.60 1.87 0.71 2.00 0.65 1.25 87.52 1.80
    Yuwu 57.12 29.59 2.74 1.92 0.64 2.01 0.78 1.11 86.71 1.93
    Wangzhuang 53.94 32.49 3.74 2.42 0.75 1.43 0.64 1.20 86.43 1.66
    Anrui 45.18 36.11 8.52 1.32 0.66 1.30 0.32 1.21 81.29 1.25
    Banjiao 66.24 14.79 4.09 7.14 1.30 1.49 0.82 0.88 81.03 4.48
    Tongdaxinjing 42.70 35.03 6.52 5.48 2.16 0.94 0.22 1.39 77.73 1.22
    4# 56.04 21.13 4.52 5.83 2.18 1.72 0.52 1.12 77.17 2.65
    Cilinshan 45.34 30.87 7.48 7.40 0.46 0.46 0.04 0.97 76.21 1.47
    Tianye1 52.09 20.15 7.58 7.78 2.70 2.18 0.76 0.98 72.24 2.59
    Tianye 51.28 20.05 8.14 8.02 2.93 2.26 0.82 0.92 71.33 2.56
    Yuncheng 45.22 7.89 28.4 5.12 3.18 0.94 0.78 0.46 53.11 5.73
    6# 32.70 19.54 4.08 18.38 6.71 0.72 3.17 0.93 52.24 1.67
    Tongliao 29.68 11.48 14.77 16.12 5.30 0.42 1.73 1.01 41.16 2.59
    下载: 导出CSV

    表  6  修正的Urbain模型参数

    Table  6  Modified Urbain model parameters

    j i
    0 1 2 3
    bi0 0 12.45 35.21 -46.21 156.33
    biC, j 1 -3.78 23.55 -49.09 33.90
    2 4.02 -22.04 35.98 -17.89
    biM, j1 1 -17.09 -22.34 37.65 -19.22
    2 27.90 -122.88 179.01 -90.2
    biK, j1 1 13.09 69.07 132.90 -65.90
    2 -6.55 22.52 -1.87 -89.08
    biN, j1 1 10.77 -31.39 -10.33 59.90
    2 -11.21 -1.33 134.44 -190.22
    biT, j1 1 23.33 -129.3 198.2 -104.43
    2 -34.76 165.22 -276.9 155.5
    下载: 导出CSV

    表  7  基于组分分类的黏度预测模型

    Table  7  Viscosity prediction model based on composition classification

    Object Model
    High silica alumina ratio coal ash;
    high silica and alumina coal ash;
    See Table 6
    high temperature melting zone of
    medium silica and alumina coal ash
    Solid precipitation zone of medium
    and low silica and alumina coal ash
    ηe=η(1-1.211θ)-2.5
    下载: 导出CSV
  • [1] LOLJA S A, HAXHI H, MARTIN D J. Correlations in the properties of Albanian coals[J]. Fuel, 2002, 81(9): 1095-1100. doi: 10.1016/S0016-2361(02)00032-7
    [2] 姚星一, 王文森.灰熔点计算公式的研究[J].燃料化学学报, 1959, 4(3): 216-223. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX195903003.htm

    YAO Xing-yi, WANG Wen-sen. Study on the empirical equations for calculating the fusion temperature of coal ash[J]. J Fuel Chem Technol, 1959, 4(3): 216-223. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX195903003.htm
    [3] WINEGARTNER E C, RHODES B T. An empirical study of the relation of chemical properties to ash fusion temperatures[J]. J Eng Power, 1975, 97(3): 395-403. doi: 10.1115/1.3446018
    [4] SEGGIANI M. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J]. Fuel, 1999, 78(9): 1121-1125. doi: 10.1016/S0016-2361(99)00031-9
    [5] ÖZBAYOGLU G, ÖZBAYOGLU M E. A new approach for the prediction of ash fusion temperatures: A case study using Turkish lignites[J]. Fuel, 2006, 85(4): 545-552. doi: 10.1016/j.fuel.2004.12.020
    [6] 陈文敏, 姜宁.煤灰成分和煤灰熔融性的关系[J].洁净煤技术, 1996, 2(2): 34-37. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS199602011.htm

    CHEN Wen-min, JIANG Ning. Relation between the coal ash composition and fusibility[J]. Clean Coal Technol, 1996, 2(2): 34-37. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS199602011.htm
    [7] HUGGINS F E, KOSMACK D A, HUFFMAN G P. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams[J]. Fuel, 1981, 60(7): 577-584. doi: 10.1016/0016-2361(81)90157-5
    [8] GRAY V R. Prediction of ash fusion temperature from ash composition for some New Zealand coals[J]. Fuel, 1987, 66(9): 1230-1239. doi: 10.1016/0016-2361(87)90061-5
    [9] HURST H J, NOVAK F, PATTERSON J H. Phase diagram approach to the fluxing effect of additions of CaCO3 on Australian coal ashes[J]. Energy Fuels, 1996, 10(6): 1215-1219. doi: 10.1021/ef950264k
    [10] JAK E. Prediction of coal ash fusion temperatures with the FACT thermodynamic computer package[J]. Fuel, 2002, 81(13): 1655-1668. doi: 10.1016/S0016-2361(02)00091-1
    [11] SONG W J, TANG L H, ZHU X D, WU Y Q, ZHU Z B, KOYAMA S. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy Fuels, 2009, 23(4): 1990-1997. doi: 10.1021/ef800974d
    [12] VARGAS S, FRANDSEN F J, DAM-JOHANSEN K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Prog Energy Combust, 2001, 27(3): 237-429. doi: 10.1016/S0360-1285(00)00023-X
    [13] SONG W, SUN Y, WU Y, ZHU Z, KOYAMA S. Measurement and simulation of flow properties of coal ash slag in coal gasification[J]. AIChE J, 2011, 57(3): 801-818. doi: 10.1002/aic.12293
    [14] BAI J, KONG L, LI W. Prediction of slag viscosity under gasification condition[C]. The 2nd International Symposium on Gasification and its Application. Fukuoka, 2010.
    [15] UNUMA H, TAKEDA S, TSURUE T, ITO S, SAYAMA S. Studies of the fusibility of coal ash[J]. Fuel, 1986, 65(11): 1505-1510. doi: 10.1016/0016-2361(86)90325-X
    [16] 台培杰.煤灰渣熔融与流动特性及水冷壁气化炉小试热模研究[D].上海:华东理工大学, 2010.

    TAI Pei-jie. Study on fusibility and fluidity of coal ash slag and hot model of membrane wall entrained-flow gasifier[D]. Shanghai: East China University of Science and Technolgy, 2010.
    [17] 白进, 孔令学, 李怀柱, 郭振兴, 白宗庆, 尉迟唯, 李文.山西典型无烟煤灰流动性的调控.燃料化学学报, 2013, 41(7): 805-813. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18214.shtml

    BAI Jin, KONG Ling-xue, LI Huai-zhu, GUO Zhen-xing, BAI Zong-qing, WEI Chi-wei, LI Wen. Adjustment in high temperature flow property of ash from Shanxi typical anthracite[J]. J Fuel Chem Technol, 2013, 41(7): 805-813. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18214.shtml
    [18] ILYUSHECHKIN A Y, HLA S S, ROBERTS D G, KINAEV N N. The effect of solids and phase compositions on viscosity behaviour and Tcv of slags from Australian bituminous coals[J]. J Non-Cryst Solids, 2011, 357(3): 893-902. doi: 10.1016/j.jnoncrysol.2010.12.004
    [19] TOPLIS M J, DINGWELL D B. Shear viscosities of CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2 liquids: Implications for the structural role of aluminium and the degree of polymerisation of synthetic and natural aluminosilicate melts[J]. Geochim Cosmochim Acta, 2004, 68(24): 5169-5188. doi: 10.1016/j.gca.2004.05.041
    [20] PATTERSON J H, HURST H J. Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers[J]. Fuel, 2000, 79(13): 1671-1678. doi: 10.1016/S0016-2361(00)00032-6
    [21] HURST H J, NOVAK F, PATTERSON J H. Viscosity measurements and empirical predictions for fluxed Australian bituminous coal ashes[J]. Fuel, 1999, 78(15): 1831-1840. doi: 10.1016/S0016-2361(99)00094-0
    [22] HURST H J, NOVAK F, PATTERSON J H. Viscosity measurements and empirical predictions for some model gasifier slags[J]. Fuel, 1999, 78(4): 439-444. doi: 10.1016/S0016-2361(98)00162-8
    [23] HURST H J, PATTERSON J H, QUINTANAR A. Viscosity measurements and empirical predictions for some model gasifier slags-Ⅱ[J]. Fuel, 2000, 79(14): 1797-1799. doi: 10.1016/S0016-2361(00)00043-0
    [24] WAANDERS F B, DYK J C, PRINSLOO C J V. The characterisation of three different coal samples by means of various analytical techniques[J]. Hyperfine Interact, 2009, 190(1/3): 109-114. https://www.researchgate.net/publication/253322621_Erratum_to_The_characterisation_of_three_different_coal_samples_by_means_of_various_analytical_techniques
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  38
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-31
  • 修回日期:  2016-02-22
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-05-10

目录

    /

    返回文章
    返回