留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型Lewis固体酸Ce3+-Ti4+-SO42-/MWCNTs制备及催化酯化反应合成生物柴油性能研究

舒庆 侯小鹏 唐国强 余长林 王金福

舒庆, 侯小鹏, 唐国强, 余长林, 王金福. 新型Lewis固体酸Ce3+-Ti4+-SO42-/MWCNTs制备及催化酯化反应合成生物柴油性能研究[J]. 燃料化学学报(中英文), 2017, 45(1): 65-74.
引用本文: 舒庆, 侯小鹏, 唐国强, 余长林, 王金福. 新型Lewis固体酸Ce3+-Ti4+-SO42-/MWCNTs制备及催化酯化反应合成生物柴油性能研究[J]. 燃料化学学报(中英文), 2017, 45(1): 65-74.
SHU Qing, HOU Xiao-peng, TANG Guo-qiang, YU Chang-lin, WANG Jin-fu. Preparation of a novel solid Lewis acid Ce3+-Ti4+-SO42-/MWCNTs and its application in the synthesis of biodiesel from esterification reaction[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 65-74.
Citation: SHU Qing, HOU Xiao-peng, TANG Guo-qiang, YU Chang-lin, WANG Jin-fu. Preparation of a novel solid Lewis acid Ce3+-Ti4+-SO42-/MWCNTs and its application in the synthesis of biodiesel from esterification reaction[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 65-74.

新型Lewis固体酸Ce3+-Ti4+-SO42-/MWCNTs制备及催化酯化反应合成生物柴油性能研究

基金项目: 

国家自然科学基金 21206062

国家自然科学基金 21466013

江西省自然科学(青年)基金计划重大项目 20143ACB21018

化学工程联合国家重点实验室(清华大学)开放课题基金 Tsinghua University, SKL-chE-14A04

华中科技大学大型电池关键材料与系统教育部重点实验室开放课题基金 201504

详细信息
    通讯作者:

    舒庆, Tel:0797-8312204, E-mail:shuqing@jxust.edu.cn

  • 中图分类号: TQ645.8

Preparation of a novel solid Lewis acid Ce3+-Ti4+-SO42-/MWCNTs and its application in the synthesis of biodiesel from esterification reaction

Funds: 

National Natural Science Foundation of China 21206062

National Natural Science Foundation of China 21466013

Major Project of Natural Science Foundation of Jiangxi Province for Youth 20143ACB21018

Open Project Program of National United Key Laboratory of Chemical Engineering Tsinghua University, SKL-chE-14A04

and Open Project Program of Key Laboratory for Large-Format Battery Materials and System of Huazhong University of Science and Technolog 201504

  • 摘要: 采用高温浸渍法,通过Ce3+、Ti4+和浓硫酸磺化反应对多壁纳米碳管进行了改性处理,制备了Lewis酸型固体酸催化剂Ce3+-Ti4+-SO42-/MWCNTs,并采用透射电镜、拉曼光谱、X射线光电子能谱、吡啶吸附红外光谱、X射线荧光光谱、X射线衍射光谱和NH3程序升温脱附等多种测试技术对催化剂的物理化学特性和结构特征进行了表征。以Ce3+-Ti4+-SO42-/MWCNTs为油酸与甲醇经酯化反应合成生物柴油的催化剂,对其催化性能进行了研究。结果表明,当醇油物质的量比为12:1,催化剂与反应物质量比为1%,反应温度为65℃,反应5 h,油酸转化率为93.4%。催化剂Ce3+-Ti4+-SO42-/MWCNTs在重复使用八次后,油酸的转化率仍为80.8%,由此表明其具有较高的催化活性和稳定性。高催化活性和稳定性是因为,纳米碳管的C 1s结合能较一般炭材料低,使得电子在其管状结构中的流动和逃逸非常容易,从而有助于负载于纳米碳管之上的活性组分之间发生强烈的相互作用,最终促使Ce3+和Ti4+分别与SO42-形成稳定的配位键,增大催化剂的晶化程度,并使SO42-与纳米碳管结合的更加牢固,增强了催化剂的稳定性,减少了催化剂中活性组分的流失。最后,由于SO42-与Ce3+的强相互作用,在不增加纳米碳管表面缺陷的情况下,改变了Ti4+-SO42-中表面原子的化学状态,使得S6+离子和Ti4+离子的吸电子能力增加,使催化剂以Lewis酸性活性位为主,避免了SO42-/MWCNTs因为以Brönsted酸位为主,而在富含水的反应介质中,由于水合反应而降低其催化活性的现象发生。
  • 图  1  MWCNTs、SO42-/MWCNTs、Ti4+-SO42-/MWCNTs和Ce3+-Ti4+-SO42-/MWCNTs的XRD谱图

    Figure  1  XRD patterns of MWCNTs, SO42-/MWCNTs, Ti4+-SO42-/MWCNTs and Ce3+-Ti4+-SO42-/MWCNTs

    图  2  Ce3+-Ti4+-SO42-/MWCNTs、Ti4+-SO42-/MWCNTs、SO42-/MWCNTs和MWCNTs的拉曼光谱谱图

    Figure  2  Raman spectra of Ce3+-Ti4+-SO42-/MWCNTs, Ti4+-SO42-/MWCNTs, SO42-/MWCNTs and MWCNTs

    图  3  SO42-/MWCNTs (a), (d)、Ce3+-Ti4+-SO42-/MWCNTs (b), (e)和Ti4+-SO42-/MWCNTs (c), (f)透射电镜照片

    Figure  3  TEM images of SO42-/MWCNTs (a), (d), Ce3+-Ti4+-SO42-/MWCNTs (b), (e) and Ti4+-SO42-/MWCNTs (c), (f)

    图  4  SO42-/MWCNTs (a)、Ti4+-SO42-/MWCNTs (b)和催化剂Ce3+-Ti4+-SO42-/MWCNTs (c)在473 K时的吡啶红外光谱谱图

    Figure  4  FT-IR spectra of adsorbed pyridine after desorption at 473 K for SO42-/MWCNTs (a), Ti4+-SO42-/MWCNTs (b) and Ce3+-Ti4+-SO42-/MWCNTs (c)

    图  5  SO42-/MWCNTs (a)、Ti4+-SO42-/MWCNTs (b)和催化剂Ce3+-Ti4+-SO42-/MWCNTs (c)的NH3程序升温脱附谱图

    Figure  5  NH3 temperature-programmed desorption profiles of SO42-/MWCNTs (a), Ti4+-SO42-/MWCNTs (b) and Ce3+-Ti4+-SO42-/MWCNTs (c)

    图  6  催化剂Ce3+-Ti4+-SO42-/MWCNTs的X射线光电子能谱谱图

    Figure  6  X-ray photoelectron spectroscopy of Ce3+-Ti4+-SO42-/MWCNTs

    (a): C 1s; (b): Ce 3d; (c): S 2p; (d): Ti 2p

    图  7  催化剂Ce3+-Ti4+-SO42-/MWCNTs的Lewis酸位形成机理示意图

    Figure  7  Formation mechanism of Lewis acid sites in Ce3+-Ti4+-SO42-/MWCNTs

    图  8  SO42-/MWCNTs、Ti4+-SO42-/MWCNTs、Ce3+-SO42-/MWCNTs、Ce3+-Ti4+-SO42-/MWCNTs的催化酯化反应活性比较

    Figure  8  Comparison of catalytic activity of SO42-/MWCNTs, Ti4+-SO42-/MWCNTs, Ce3+-SO42-/MWCNTs, Ce3+-Ti4+-SO42- /MWCNTs in the esterification

    reaction conditions: mass ratio of catalyst to reactants is 0.5%, the mol ratio of methanol to oleic acid is 12: 1, reaction temperature is 65 ℃

    图  9  反应温度对油酸转化率的影响

    Figure  9  Influence of reaction temperature on the conversion of oleic acid

    reaction conditions: mass ratio of catalyst to reactants is 0.5%, the mol ratio of methanol to oleic acid is 12: 1, reaction time is 7 h

    图  10  催化剂用量对油酸转化率的影响

    Figure  10  Influence of catalyst loading on the conversion of oleic acid

    reaction conditions: the reaction temperature is 65 ℃, the mol ratio of methanol to oleic acid is 12: 1, reaction time is 7 h

    图  11  甲醇与油酸的物质的量比对油酸转化率的影响

    Figure  11  Influence of mol ratio of methanol/oleic acid on the conversion of oleic acid

    reaction conditions: the reaction temperature is 65 ℃, the mass ratio of catalyst to reactants is 1%, reaction time is 7 h

    图  12  SO42-/MWCNTs、Ti4+-SO42-/MWCNTs和Ce3+-Ti4+-SO42-/MWCNTs的催化稳定性比较

    Figure  12  Comparison of the catalytic stability of SO42-/MWCNTs, Ti4+-SO42-/MWCNTs and Ce3+-Ti4+-SO42-/MWCNTs

    reaction conditions: the reaction temperature is 65 ℃, the mass ratio of catalyst to reactants is 1%, reaction time is 5 h

  • [1] 梁金花, 任晓乾, 王锦堂, 姜岷, 李振江.双核碱性离子液体催化棉籽油酯交换制备生物柴油[J].燃料化学学报, 2010, 38(3):275-280. doi: 10.1016/S1872-5813(10)60033-3

    LIANG Jin-hua, REN Xiao-qian, WANG Jin-tang, JIANG min, LI Zhen-jiang. Preparation of biodiesel by transesterification from cottonseed oil using the basic dication ionic liquids as catalyst[J]. J Fuel Chem Technol, 2010, 38(3):275-280. doi: 10.1016/S1872-5813(10)60033-3
    [2] HOSSEINI S, JANAUN J, CHOONG T S Y. Feasibility of honeycomb monolith supportedsugar catalyst to produce biodiesel from palm fattyacid distillate (PFAD)[J]. Process Saf Environ Prot, 2015, 98:285-295. doi: 10.1016/j.psep.2015.08.011
    [3] SHYAMSUNDAR M, SHAMSHUDDIN S Z M, ANIZ C U. Cordierite honeycomb monoliths coated with zirconia and its modified forms for biodiesel synthesis from pongamiaglabra[J]. J Am Oil Chem Soc, 2015, 92(3):335-344. doi: 10.1007/s11746-015-2609-4
    [4] KAUR N, ALI A. Preparation and application of Ce/ZrO2-TiO2/SO42-as solid catalyst for the esterification of fatty acids[J]. Renewable Energy, 2015, 64(11):6392-6395.
    [5] 舒庆, 侯小鹏, 刘峰生, 唐国强, 许宝泉, 张彩霞.稀土镧改性磷钨杂多酸盐催化油酸与甲醇酯化反应合成生物柴油活性研究[J].有色金属科学与工程, 2016, 7(3):131-136. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201603023.htm

    SHU Qing, HOU Xiao-peng, LIU Feng-sheng, TANG Guo-qiang, XU Bao-quan, ZHANG Cai-xia. Studies on the catalytic activity of La-modified phosphotungstic heteropoly acid salt in the synthesis of biodiesel from the esterification of methanol and oleci acid[J]. Nonfer Metal Sci Eng, 2016, 7(3):131-136. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201603023.htm
    [6] SHU Q, ZHANG Q, XU G, WANG J F. Preparation of biodiesel using s-MWCNT catalysts and the coupling of reaction and separation[J]. Food Bioprod Process, 2009, 87(3):164-170. doi: 10.1016/j.fbp.2009.01.004
    [7] JUAN J C, JIANG Y J, MENG X J, CAO W L, YARMO M A, ZHANG J C. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst[J]. Mater Res Bull, 2007, 42(7):1278-1285. doi: 10.1016/j.materresbull.2006.10.017
    [8] IGLESIAS J, MELERO J A, MORALES G, MORENO J, SEGURA Y, PANIAGUA M, CAMBRA A, HERNÁNDEZ B. Zr-SBA-15 lewis acid catalyst:Activity in meerwein ponndorf verley reduction[J]. Catalysts, 2015, 5(4):1911-1927. doi: 10.3390/catal5041911
    [9] GUAN Q Q, SHANG H, LIU J, NING P. Biodiesel from transesterification at low temperature by AlCl3catalysis in ethanol and carbon dioxide as cosolvent:Process, mechanism and application[J]. Appl Energy, 2016, 164:380-386. doi: 10.1016/j.apenergy.2015.11.029
    [10] MELERO J A, IGLESIAS J, MORALES G. Heterogeneous acid catalysts for biodiesel production:current status and future challenges[J]. Green Chem, 2009, 11(11):1285-1308. https://www.researchgate.net/publication/244550800_Heterogeneous_acid_catalysts_for_biodiesel_production_Current_status_and_future_challenges
    [11] REINOSO D M, DAMIANI D E, TONETTO G M. Efficient production of biodiesel from low-cost feedstock using zinc oleate as catalyst[J]. Fuel Process Technol, 2015, 134:26-31. doi: 10.1016/j.fuproc.2015.03.003
    [12] CHERYL-LOW Y L, THEAM K L, LEE H V. Alginate-derived solid acid catalyst for esterification of low-cost palm fatty acid distillate[J]. Energ Convers Manage, 2015, 106:932-940. doi: 10.1016/j.enconman.2015.10.018
    [13] ALMEIDA R M D, NODA L K, GONALVES N S, MENEGHETTI S M P, MENEGHETTI M R. Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts[J]. Appl Catal A:Gen, 2008, 347(1):100-105. doi: 10.1016/j.apcata.2008.06.006
    [14] 侯凯军, 孟明, 邹志强, 吕倩.掺杂La3+对纳米Au/TiO2催化剂结构和性能的影响[J].无机化学学报, 2007, 23(9):1538-1544. http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20070907

    HOU Kai-Jun, MENG Ming, ZOU Zhi-Qiang, LV Qian. Effect of La3+ doping on the structures and performance of nano-structured Au/TiO2 catalysts[J]. Chin J Inorg Chem, 2007, 23(9):1538-1544. http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20070907
    [15] ZHANG X H, TANG Q Q, YANG D, HU J H. Preparation of poly (p-styrenesulfonic acid) grafted multi-walled carbonnanotubes and their application as a solid-acid catalyst[J]. Mater Chem Phys, 2011, 126(1):310-313. https://www.researchgate.net/profile/Bian_Gang/publication/283537763_A_novel_polyp-styrenesulfonic_acid_grafted_carbon_nanotubegraphene_oxide_architecture_with_enhanced_catalytic_performance_for_the_synthesis_of_benzoate_esters_and_fatty_acid_alkyl_esters/links/5649b43b08ae9f9c13ec7b02.pdf
    [16] JUMI Y, JI S I, YOUNG S L, HYUNG I K. Effect of oxyfluorination on electromagnetic interference shielding behavior of MWCNT/PVA/PAAc composite microcapsules[J]. Eur Polym J, 2010, 46(5):900-909. doi: 10.1016/j.eurpolymj.2010.02.005
    [17] REDDY G K, HE J, THIEL S W, PINTO N G, SMIRNIOTIS P G. Sulfur-tolerant Mn-Ce-Ti sorbents for elemental mercury removal from flue gas:Mechanistic investigation by XPS[J]. J Phys Chem C, 2015, 119(16):8634-8644. doi: 10.1021/jp512185s
    [18] LI Z J, DENG S B, YU G, HUANG J, LIM V C. As (Ⅴ) and As (Ⅲ) removal from water by a Ce-Ti oxide adsorbent:Behavior and mechanism[J]. Chem Eng J, 2010, 161(1/2):106-113. https://www.researchgate.net/publication/223927387_AsV_and_AsIII_Removal_from_Water_by_a_Ce-Ti_Oxide_Adsorbent_Behavior_and_Mechanism?_sg=lC3UM9wFYIZW1jR0EPPVnYeEuqsTe8qHTgGVRKwtxaM_wZCuuXc9r8AQ-ZTvhxvNsHPH3LT3qcoVTSRPY1dQjQ
    [19] LAN L, CHEN S, ZHAO M, GONG M, CHEN Y. The effect of synthesis method on the properties and catalyticperformance of Pd/Ce0.5Zr0.5O2-Al2O3 three-way catalyst[J]. J Mol Catal A:Chem, 2014, 394(10):10-21.
    [20] SHU Q, NAWAZ Z, GAO J X, WANG J F. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst:Reaction and separation[J]. Bioresource Technol, 2010, 101(14):5374-5384. doi: 10.1016/j.biortech.2010.02.050
  • 加载中
图(12)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  22
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-16
  • 修回日期:  2016-11-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-01-10

目录

    /

    返回文章
    返回