留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类水滑石Ti/Li/Al-LDHs的制备及其CO2吸附性能

孔婷婷 董羿蘩 张颖萍 张亚刚 周安宁

孔婷婷, 董羿蘩, 张颖萍, 张亚刚, 周安宁. 类水滑石Ti/Li/Al-LDHs的制备及其CO2吸附性能[J]. 燃料化学学报(中英文), 2016, 44(8): 1017-1024.
引用本文: 孔婷婷, 董羿蘩, 张颖萍, 张亚刚, 周安宁. 类水滑石Ti/Li/Al-LDHs的制备及其CO2吸附性能[J]. 燃料化学学报(中英文), 2016, 44(8): 1017-1024.
KONG Ting-ting, DONG Yi-fan, ZHANG Ying-ping, ZHANG Ya-gang, ZHOU An-ning. Preparation of hydrotalcite-like Ti/Li/Al-LDHs and its performance in CO2 adsorption[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 1017-1024.
Citation: KONG Ting-ting, DONG Yi-fan, ZHANG Ying-ping, ZHANG Ya-gang, ZHOU An-ning. Preparation of hydrotalcite-like Ti/Li/Al-LDHs and its performance in CO2 adsorption[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 1017-1024.

类水滑石Ti/Li/Al-LDHs的制备及其CO2吸附性能

基金项目: 

国家自然科学基金资助 51074122

详细信息
  • 中图分类号: TQ424.1

Preparation of hydrotalcite-like Ti/Li/Al-LDHs and its performance in CO2 adsorption

More Information
  • 摘要: 采用共沉淀法制备了一系列新型的类水滑石Ti/Li/Al-LDHs材料,通过原子吸收光谱(AAS)、X射线衍射(XRD)、扫描电镜(SEM)、热重分析(TG)和傅里叶变换红外光谱(FT-IR)等技术对其进行了表征,研究了不同金属元素比例和焙烧温度对该Ti/Li/Al-LDHs材料的结构、形貌及其CO2吸附性能的影响。结果表明,当Ti/Li/Al比为1:3:4时,水滑石Ti/Li/Al-LDHs的结晶度最好,形貌最规整,而Ti/Li/Al比为1:3:2、300℃下焙烧后得到的Ti1Li3Al2-LDHs300的CO2吸附性能最好。Ti1Li3Al2-LDHs300上CO2吸附量可达53.5mg/g,10次循环吸附后,CO2吸附量仅下降了2.4%。
  • 图  1  固定床反应器实验装置示意图

    Figure  1  Schematic diagram of the fixed bed reactor system

    图  2  不同Ti4+/ Li+/ Al3+物质的量比的Ti/Li/Al-LDHs的XRD谱图

    Figure  2  XRD patterns of Ti/Li/Al-LDHs with different Ti4+/ Li+/Al3+mol ratio

    a: Ti1Li3Al1-LDHs; b: Ti1Li3Al2-LDHs; c: Ti1Li3Al3-LDHs; d: Ti1Li3Al4-LDHs; e: Ti2Li3Al3-LDHs; f: Ti3Li3Al2-LDHs

    图  3  不同Ti4+/Li+/Al3+物质的量比的Ti/Li/Al-LDHs的TG-DSC曲线

    Figure  3  TG-DSC profiles of Ti/Li/Al-LDHs with different Ti4+/Li+/Al3+ mol ratio

    a: Ti1Li3Al4-LDHs; b: Ti1Li3Al3-LDHs; c: Ti1Li3Al2-LDHs; d: Ti1Li3Al1-LDHs

    图  4  Ti1Li3Al2-LDHs的干燥样及不同温度下焙烧样的XRD谱图

    a: dried sample; b: 180 ℃;c: 300 ℃; d: 500 ℃; e: 600 ℃

    Figure  4  XRD patterns of Ti1Li3Al2-LDHs calcined at different temperatures

    图  5  Ti1Li3Al2-LDHs的干燥样及不同温度下焙烧样的SEM照片

    Figure  5  SEM images of Ti1Li3Al2-LDHs calcined at different temperatures

    (a): dried sample; (b): 180 ℃; (c): 300 ℃; (d): 500 ℃; (e): 600 ℃

    图  6  Ti1Li3Al2-LDHs的干燥样及不同温度下焙烧样的FT-IR谱图

    Figure  6  FT-IR patterns of Ti1Li3Al2-LDHs calcined at different temperatures

    a: dried sample; b: 180 ℃; c: 300 ℃; d: 500 ℃; e: 600 ℃

    图  7  不同Ti4+/Li+/Al3+物质的量比的Ti/Li/Al-LDHs经不同温度焙烧后样品的CO2吸附

    Figure  7  CO2 adsorption capacity of Ti/Li/Al-LDHs with different Ti4+/Li+/Al3+ mol ratio and calcined at various temperatures

    □: Ti1Li3Al1-LDHs; ●: Ti1Li3Al2-LDHs; ▲: Ti1Li3Al3-LDHs; ▶: Li1Al2-LDHs; ∇: Ti1Li3Al4-LDHs; ◇: Ti2Li3Al4-LDHs; ◀: Ti3Li3Al4-LDHs

    图  8  Ti1Li3Al2-LDHs干燥样经10次循环后CO2的吸附

    Figure  8  CO2 adsorption capacity of Ti1Li3Al2-LDHs dried sample after 10 cycles (adsorption condition: room temperature; the inlet flow rate, 80 mL/min)

    图  9  Ti1Li3Al2-LDHs300经10次循环后CO2的吸附

    Figure  9  CO2 adsorption capacity of Ti1Li3Al2-LDHs300 after 10 cycles

    (adsorption condition: room temperature; the inlet flow rate, 80 mL/min)

    表  1  不同Ti4+/Li+/Al3+物质的量比的Ti/Li/Al-LDHs晶胞参数和晶粒粒径

    Table  1  Lattice parameter and grain size of Ti/Li/Al-LDHs with different Ti4+/Li+/Al3+ mol ratio

    Ti/Li/Al-LDHsTi/Li/Al in solutionTi/Li/Al in solidCell parameters d/nmGrain size d/nm
    d003d006d110a-axisc-axisdadc
    Ti1Li3Al1-LDHs1:3:10.98:2.12:1.130.770.400.150.292.3118.4911.68
    Ti1Li3Al2-LDHs1:3:20.99:2.37:2.140.750.380.150.292.2516.4216.84
    Ti1Li3Al3-LDHs1:3:30.96:2.62:3.100.750.380.150.292.2417.0510.00
    Ti1Li3Al4-LDHs1:3:41.02:2.72:3.960.740.370.150.292.1819.5210.21
    Ti2Li3Al4-LDHs2:3:41.98:2.84:3.930.740.370.150.292.2215.308.98
    Ti3Li3Al4-LDHs3:3:42.98:2.92:4.010.750.380.150.292.2415.509.47
    下载: 导出CSV

    表  2  不同比例的Ti/Li/Al-LDHs的比表面积和孔结构参数

    Table  2  Surface area and pore structure parameters of Ti/Li/Al-LDHs with different Ti4+/Li+/Al3+ molar ratios

    SampleBET surface area A/(m2·g-1)Pore volume v/(m3·g-1)Pore size d/nm
    totalmicro
    Ti1Li3Al1-LDHs300131.9710.5030.0073.285
    Ti1Li3Al2-LDHs300138.6210.5220.0083.427
    Ti1Li3Al3-LDHs300120.9830.4920.0063.390
    Ti1Li3Al4-LDHs300121.4540.3910.0053.575
    Ti2Li3Al4-LDHs300120.0300.3710.0043.450
    Ti3Li3Al4-LDHs300112.5810.3770.0043.569
    下载: 导出CSV

    表  3  不同比例和不同温度焙烧下Ti/Li/Al-LDHs的比表面积和孔结构参数

    Table  3  Surface area and pore structure parameters of Ti1Li3Al2-LDHs calcined at different temperatures

    SampleBET surface area A/(m2·g-1)Pore volume v/(m3·g-1)Pore size d/nm
    totalmicro
    Ti1Li3Al2-LDHs145.3710.3110.0043.812
    Ti1Li3Al2-LDH180118.7520.3010.0063.650
    Ti1Li3Al2-LDHs300138.6210.5220.0083.427
    Ti1Li3Al2-LDHs500150.8510.4820.0063.392
    Ti1Li3Al2-LDHs600155.9000.3040.0063.306
    下载: 导出CSV
  • [1] IPCC.Special report on renewable energy sources and climate change mitigation[EB/OL].http://www.ipcc.ch/report/srren/,2011.
    [2] MORIARTY P, HONNERY D.Mitigating greenhouse:Limited time, limited options[J].Energy Policy, 2008, 36(4):1251-1256. doi: 10.1016/j.enpol.2008.01.021
    [3] BHOWN A S, FREEMAN B C.Analysis and status of post-combustion carbon dioxide capture technologies[J].Environ Sci Technol, 2011, 45(20):8624-8632. doi: 10.1021/es104291d
    [4] FILHO J F N, LEROUX F, VERNEY V, VALIM J B.Percolated non-Newtonian flow for silicone obtained from exfoliated bioinorganic layered double hydroxide intercalated with amino acid[J].Appl Clay Sci, 2012, 55:88-93. doi: 10.1016/j.clay.2011.10.010
    [5] IGUCHI S, TERAMURA K, HOSOKAWA S, TANAKA T.Photocatalytic conversion of CO2 in an aqueous solution using variouskinds of layered double hydroxides[J].Catal Today, 2015, 251:140-144. doi: 10.1016/j.cattod.2014.09.005
    [6] YE L, FIRDAUS A.High temperature adsorption of carbon dioxide on Cu-Al hydrotalcite-derived mixed oxides:kinetics and equilibria by thermogravimetry[J].J Therm Anal Calorim, 2009, 97:885-889. doi: 10.1007/s10973-009-0156-7
    [7] SAKR A A E, ZAKI T, SABER O, HASSAN S A, ABOUL-GHEIT A K, FARAMAWY S.Synthesis of Zn-Al LDHs intercalated with urea derived anions for capturing carbon dioxide from natural gas[J].J Taiwan Inst Chem Eng, 2013, 44(6):957-962. doi: 10.1016/j.jtice.2013.02.003
    [8] PATHIK S, SHINSUKE I, KAUZUHIKO Y, KENZO D, SHINOBU O, MASATAKA T, TADASHI S, NⅡ E, RYO S, JAN L, DAISUKE I, JONATHAN P H, KATSUHIKO A, BISHNU P B, YUSUKE Y, NOBUO I.Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide[J].Appl Mater Interfaces, 2014, 6(20):18352-18359. doi: 10.1021/am5060405
    [9] WANG J W, STEVENS L A, DRAGE T C, WOOD J.Preparation and CO2 adsorption of amine modified Mg-Al LDH via exfoliation route[J].Chem Eng Sci, 2012, 68(1):424-431. doi: 10.1016/j.ces.2011.09.052
    [10] SHAO M F, HAN J B, WEI M, DAVID G, EVANS, XUE D.The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis[J].Chem Eng J, 2011, 168(2):519-524. doi: 10.1016/j.cej.2011.01.016
    [11] HOSNI K, ABDELKARIM O, FRINI-SRASRA N.Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides[J].Korean J Chem Eng, 2015, 32(1):104-112. doi: 10.1007/s11814-014-0199-8
    [12] WANG S L, LIN C H, YAN Y Y, WANG M K.Synthesis of Li/Al LDH using aluminum and LiOH[J].Appl Clay Sci, 2013, 72:191-195. doi: 10.1016/j.clay.2013.02.001
    [13] HHANG L, WANG J, GAO Y, QIAO Y, ZHENG Q.Synthesis of LiAl2-layered double hydroxides for CO2 capture over a wide temperature range[J].J Mater Chem A, 2014, 2(43):18454-18462. doi: 10.1039/C4TA04065A
    [14] AZZOU A, ARUS V A, PLATON N, GHOMARI K, NISTOR I D, SHIAO T C.Polyol-modified layered double hydroxides with attenuated basicity for a truly reversible capture of CO2[J].Adsorption, 2013, 19(5):909-918. doi: 10.1007/s10450-013-9498-3
    [15] SHAO M, HAN J, WEI M, EVANS D G, DUAN X.The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis[J].Chem Eng J, 2011, 168(2):519-524. doi: 10.1016/j.cej.2011.01.016
    [16] TERUEL L, BOUIZI Y, ATIENZAR P.Hydrotalcities of zinc and titanium as precursors of finely dispersed mixed oxide semiconductors for dye-sensitized solar cells[J].Energy Environ Sci, 2009, 3(1):154-159.
    [17] SABER O, TAGA H.New layered double hydroxide, Zn-Ti LDH:Preparation and intercalation reactions[J].J Inclusion Phenom Macrocyclic Chem, 2003, 45(1/2):107-115. doi: 10.1023/A:1023078728942
    [18] 孔童童, 王霞, 郭庆杰.新型多级微/介孔固态胺吸附剂的制备及其CO2吸附性能研究[J].燃料化学学报, 2015, 43(12):1489-1497. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18749.shtml

    KONG Tong-tong, WANG Xia, GUO Qing-jie.Preparation and CO2 adsorption performance of a novel hierarchical micro/mesoporous solid amine sorbent[J].J Fuel Chem Technol, 2015, 43(12):1489-1497. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18749.shtml
    [19] LIU L J, ZHAO C, XU J, LI Y.Integrated CO2 capture and photocatalytic conversion by a hybrid adsorbent/photocatalyst material[J].Appl Catal B:Environ, 2015, 179:489-499. doi: 10.1016/j.apcatb.2015.06.006
    [20] CHANG P H, CHANG Y P, CHEN S Y, YU C T CHYOU Y P.Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors:Synthesis, characterization, and CO2 capture capacity[J].ChemSusChem, 2011, 4(12):1844-1851. doi: 10.1002/cssc.v4.12
    [21] 虎学梅, 顾正莹, 李效民, 高相东, 施鹰.基于纳米多孔钛酸锂结构的染料敏化太阳电池复合光阳极研究[J].无机材料学报, 2015, 30(10):1037-1042. doi: 10.15541/jim20150094

    HU Xue-mei, GU Zheng-ying, LI Xiao-min, GAO Xiang-dong, SHI Ying.Hybrid photoanodes based on nanoporous lithium titanate nanostructures in dye-sensitized solar cells[J].J Inorg Mater, 2015, 30(10):1037-1042. doi: 10.15541/jim20150094
    [22] 丁娴, 殷凡文, 彭成栋, 曾庆新.规整Mn-Zn-Mg-Al-CO3四元LDHs层状材料的水热合成, 结构及性质[J].无机化学学报, 2012, 28(2):331-341.

    DING Xian, YIN Fan-wen, PENG Cheng-dong, ZENG Qing-xin.Hydrothermal synthsis, structural analysis and performance of regular Mn-Zn-Mg-Al-CO3 quaternary layered double hydroxides (LDHs)[J].Chin J Inorg Chem, 2012, 28(2):331-341.
    [23] XUE X Y, ZHANG S H, ZHANG H M.Structures of LDHs intercalated with ammonia and the thermal stability for ploy (vinyl chloride)[J].Am J Anal Chem, 2015, 6(4):334-341. doi: 10.4236/ajac.2015.64032
    [24] ZHANG Y, LIU J H, LI Y D, YU M, LI S M, XUE B.A facile approach to superhydrophobic LiAl-layered double hydroxide film on Al-Li alloy substrate[J].J Coat Technol Res, 2015, 12(3):595-601. doi: 10.1007/s11998-015-9660-9
    [25] 李碧.含镁复合氧化物的制备及其CO2吸脱附性能的研究[D].太原:中国科学院山西煤炭化学研究所, 2009.

    LI Bi.Preparation of Mg containing composite oxides and their CO2 adsorption and desorption properties study[D].Taiyuan:Institute of Coal Chemistry, Chinese Academy of Sciences, 2009.
    [26] YONG Z, RODRIGUES A E.Hydrotalcite-like compounds as adsorbents for carbon dioxide[J].Energy Convers Manage, 2002, 43(14):1865-1876. doi: 10.1016/S0196-8904(01)00125-X
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  38
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-07
  • 修回日期:  2016-06-18
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-08-10

目录

    /

    返回文章
    返回