留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni含量对负载型NiO/ZnO-TiO2吸附剂结构及吸附脱硫性能的影响

周广林 陈晟 李芹 姜伟丽 周红军 龚学成

周广林, 陈晟, 李芹, 姜伟丽, 周红军, 龚学成. Ni含量对负载型NiO/ZnO-TiO2吸附剂结构及吸附脱硫性能的影响[J]. 燃料化学学报(中英文), 2019, 47(8): 987-992.
引用本文: 周广林, 陈晟, 李芹, 姜伟丽, 周红军, 龚学成. Ni含量对负载型NiO/ZnO-TiO2吸附剂结构及吸附脱硫性能的影响[J]. 燃料化学学报(中英文), 2019, 47(8): 987-992.
ZHOU Guang-lin, CHEN Sheng, LI Qin, JIANG Wei-li, ZHOU Hong-jun, GONG Xue-cheng. Impact of Ni content on the structure and adsorption desulfurization performance of Ni/ZnO-TiO2 adsorbent[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 987-992.
Citation: ZHOU Guang-lin, CHEN Sheng, LI Qin, JIANG Wei-li, ZHOU Hong-jun, GONG Xue-cheng. Impact of Ni content on the structure and adsorption desulfurization performance of Ni/ZnO-TiO2 adsorbent[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 987-992.

Ni含量对负载型NiO/ZnO-TiO2吸附剂结构及吸附脱硫性能的影响

详细信息
  • 中图分类号: TE624

Impact of Ni content on the structure and adsorption desulfurization performance of Ni/ZnO-TiO2 adsorbent

More Information
  • 摘要: 以ZnO-TiO2为载体,采用等体积浸渍法制备了不同Ni含量的NiO/ZnO-TiO2汽油脱硫吸附剂。采用X射线衍射(XRD)、压汞、H2程序升温还原(H2-TPR)和H2程序升温脱附(H2-TPD)等手段对吸附剂进行了表征。同时,采用FCC轻汽油为原料,在固定床反应装置中对不同Ni含量的NiO/ZnO-TiO2吸附剂进行脱硫性能评价,以考察Ni含量对该吸附剂脱硫性能的影响。结果表明,Ni含量适量增加对于吸附剂比表面积、内部孔道分布和颗粒强度影响较小,同时能够增加具有脱硫活性的Ni0物种,促进吸附剂脱硫活性。当吸附剂中Ni质量分数达到5.48%后,吸附剂的内部孔道分布改变,吸附剂的比表面积和颗粒强度明显降低,对吸附剂脱硫活性极为不利。当Ni质量分数为4.45%时,吸附剂具有最佳脱硫性能,能够将FCC轻汽油中3×10-4的总硫含量降低至5×10-6以下,并维持脱硫时间达152 h,穿透硫容达11.24%(112.4 mg S/g吸附剂),且脱硫后FCC轻汽油烯烃含量变化较小。
  • 图  1  焙烧后NiO/ZnO-TiO2-x吸附剂的XRD谱图

    Figure  1  Powder-XRD patterns of the NiO/ZnO-TiO2-x adsorbents

    图  2  NiO/ZnO-TiO2-x吸附剂的孔径分布

    Figure  2  Pore size distribution of the NiO/ZnO-TiO2-x adsorbents

    图  3  NiO/ZnO-TiO2-x吸附剂的H2-TPR谱图

    Figure  3  H2-TPR profiles of the NiO/ZnO-TiO2-x adsorbents

    图  4  Ni/ZnO-TiO2-x吸附剂的H2-TPD谱图

    Figure  4  H2-TPD profiles of the Ni/ZnO-TiO2-x adsorbents

    图  5  不同Ni含量的NiO/ZnO-TiO2-x吸附剂的FCC轻汽油脱硫穿透曲线

    Figure  5  Adsorptive desulfurization curves of FCC gasoline on Ni/ZnO-TiO2-x adsorbents with different Ni content

    图  6  不同Ni含量NiO/ZnO-TiO2-x吸附剂的FCC轻汽油脱硫穿透硫容

    Figure  6  Breakthrough sulfur capacities of the adsorptive desulfurization of FCC gasoline on Ni/ZnO-TiO2-x adsorbents with different Ni contents

    表  1  NiO/ZnO-TiO2-x吸附剂的织构参数

    Table  1  Textural properties of the NiO/ZnO-TiO2-x adsorbents

    Absorbent ABET/
    (m2·g-1)
    Pore volume v/
    (mL·g-1)
    Average pore diameter
    d/nm
    NiO/ZnO-TiO2-2.95 31.02 0.23 29.6
    NiO/ZnO-TiO2-4.45 28.84 0.24 33.1
    NiO/ZnO-TiO2-5.48 23.78 0.23 38.1
    NiO/ZnO-TiO2-6.49 23.40 0.23 38.4
    下载: 导出CSV

    表  2  NiO/ZnO-TiO2-x吸附剂的颗粒强度

    Table  2  Particle strength of the NiO/ZnO-TiO2-x adsorbents

    Adsorbent NiO/ZnO-TiO2-2.95 NiO/ZnO-TiO2-4.45 NiO/ZnO-TiO2-5.48 NiO/ZnO-TiO2-6.49
    Particle strength/(N·cm-1) 80.5 65.7 27.0 13.4
    下载: 导出CSV

    表  3  FCC轻汽油脱硫前后烯烃含量

    Table  3  Olefins content of FCC gasoline before and after the desulfurization process

    Sample Olefins
    w/%
    Alkanes
    w/%
    Density
    ρ/(g·cm-3)
    FCC gasoline 42.6 55.27 0.6879
    Ni/ZnO TiO2-2.95 43.2 54.71 0.6768
    Ni/ZnO-TiO2-4.45 42.9 55.10 0.6796
    Ni/ZnO-TiO2-5.48 42.3 55.96 0.6767
    Ni/ZnO-TiO2-6.49 42.2 56.16 0.6842
    下载: 导出CSV
  • [1] 钱伯章.清洁汽、柴油生产进程与技术进展(一)[J].润滑油与燃料, 2015, 25(5):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rhyyrl201505001

    QIAN Bo-zhang. Production process and technological progress of clean gas and diesel oil(Ⅰ)[J]. Lubes Fuels, 2015, 25(5):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rhyyrl201505001
    [2] KHARE, GYANESH P, BARTLESVILL E. Desulfurization process and novel bimetallic sorbent systems for same: US, 6274533[P]. 2001-8-14.
    [3] HUANG L C, WANG G F, QIN Z F, DONG M, DU M X, GE H, LI X K, ZHAO Y D, ZHANG J, HU T D, WANG J G. In situ XAS study on the mechanism of reactive adsorption desulfurization of oil product over Ni/ZnO[J]. Appl Catal B:Environ, 2011, 106(1):26-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af20580214ae4d0b757fd6c131606c93
    [4] ZHAO L, CHEN Y, GAO J S, CHEN Y. Desulfurization mechanism of FCC gasoline:A review[J]. Front Chem Sci Eng, 2010, 4(3):314-321. doi: 10.1007/s11705-009-0271-9
    [5] HUANG L X, WANG G F, QIN Z F, DU M X, DONG M, GE H, WU Z W, ZHAO Y D, MA C Y, HU T D, WANG J G. A sulfur K-edge XANES study on the transfer of sulfur species in the reactive adsorption desulfurization of diesel oil over Ni/ZnO[J]. Catal Commun, 2010, 11(7):592-596. doi: 10.1016/j.catcom.2010.01.001
    [6] RYZHIKOV A, BEZVERKHYY I, BELLAT J P. Reactive adsorption of thiophene on Ni/ZnO:Role of hydrogen pretreatment and nature of the rate determining step[J]. Appl Catal B:Environ, 2008, 84(3):766-772. https://www.sciencedirect.com/science/article/pii/S0926337308002270
    [7] PETZOLD F G, JASINSKI J, CLARK E L, KIM J H, ABSHER J, TOUFAR H, SUNKARA M K. Nickel supported on zinc oxide nanowires as advanced hydrodesulfurization catalysts[J]. Catal Today, 2012, 198(1):219-227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d57c947999cbb4c024544d40b1e995eb
    [8] ZHANG Y L, YANG Y X, HAN H X, YANG M, WANG L, ZHANG Y N, JANG Z X, LI C. Ultra-deep desulfurization via reactive adsorption on Ni/ZnO:The effect of ZnO particle size on the adsorption performance[J]. Appl Catal B:Environ, 2012, 119/120:13-19. doi: 10.1016/j.apcatb.2012.02.004
    [9] HUSSAIN A H M S, TATARCHUK B J. Adsorptive desulfurization of jet and diesel fuels using Ag/TiOx-Al2O3 and Ag/TiOx-SiO2 adsorbents[J]. Fuel, 2013, 107(9):465-473. https://www.sciencedirect.com/science/article/pii/S0016236112009064
    [10] RANA M S, MAITY S K, ANCHEYTA J, DHAR G M, RAO T S R P. TiO2-SiO2 supported hydrotreating catalysts:physico-chemical characterization and activities[J]. Appl Catal A:Gen, 2003, 253(1):165-176. doi: 10.1016/S0926-860X(03)00502-7
    [11] STRANICK M A, HOUALLA M, HERCULES D M. The influence of TiO2 on the speciation and hydrogenation activity of Co/Al2O3catalysts[J]. J Catal, 1990, 125(1):214-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/chin.199048021
    [12] 邓存, 段连运, 徐献平, 谢有畅.复合载体TiO2/SiO2的气相吸附法制备及MoO3在其表面上的分散状态[J].催化学报, 1993, 14(4):281-286. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA199304005.htm

    DENG Cun, DUAN Lian-yun, XU Xian-ping, XIE You-chang. Preparation of composite carrier TiO2/SiO2 by gas adsorption and dispersion of MoO3 on its surface[J]. Chin J Catal, 1993, 14(4):281-286. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA199304005.htm
    [13] ROH H S, JUN K W, DONG W S, CHANG J S, PARK S E, JOE Y I. Highly active and stable Ni/Ce-ZrO2, catalyst for H2, production from methane[J]. J Mol Catal A:Chem, 2002, 181(1):137-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91bdfd43b9ff7da1d1ab1862518d6ff5
    [14] ULLAH R, BAI P, WU P P, ETIM U J, ZHANG J Q, HAN D Z, SUBHAN F, ULLAH S, ROOD M J, YAN Z F. Superior performance of freeze-dried Ni/ZnO-Al2O3 adsorbent in the ultra-deep desulfurization of high sulfur model gasoline[J]. Fuel Process Technol, 2016, 156:505-514. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=11d67dfa361024279a182b687f39eb97
    [15] GOICOECHEA S, KRALEVA E, SOKOLOV S, SCHNEIDER M, POHI M M, KOCKMANN N, EHRICH H. Support effect on structure and performance of Co and Ni catalysts for steam reforming of acetic acid[J]. Appl Catal A:Gen, 2016, 514:182-191. doi: 10.1016/j.apcata.2015.12.025
    [16] 熊峻, 陈吉祥, 张继炎.镍负载量对邻氯硝基苯加氢制邻氯苯胺Ni/TiO2催化剂性能的影响[J].催化学报, 2006, 27(7):579-584. doi: 10.3321/j.issn:0253-9837.2006.07.011

    XIONG Jun, CHEN Ji-xiang, ZHANG Ji-yan. Influence of Ni loading on properties of Ni/TiO2 catalyst for hydrogenation of o-chloronitrobenzene to o-chloroaniline[J]. Chin J Catal, 2006, 27(7):579-584. doi: 10.3321/j.issn:0253-9837.2006.07.011
    [17] 唐明兴, 李学宽, 吕占军, 葛晖, 周立公.苯中硫在Ni/ZnO催化剂上加氢吸附脱除的研究[J].燃料化学学报, 2009, 37(6):707-712. doi: 10.3969/j.issn.0253-2409.2009.06.012

    TANG Ming-xing, LI Xue-kuan, LÜ Zhan-jun, GE Hui, ZHOU Li-gong. Ultra-deep hydrodesulfurization of benzene over Ni/ZnO catalyst[J]. J Fuel Chem Technol, 2009, 37(6):707-712. doi: 10.3969/j.issn.0253-2409.2009.06.012
    [18] FERNANDES D M, SCOFIELD C F, NETO A A, CARDOSO M J B, ZOTIN J L, ZOTIN F M Z. The hydrogen adsorption capacity of commercial Pd/Rh and Pt/Rh automotive catalysts and its relationship to their activity[J]. Chem Eng J, 2012, 189/190:62-67. doi: 10.1016/j.cej.2012.02.024
    [19] 杨霞, 田大勇, 孙守理, 孙琦. ZrO2-Al2O3复合载体对镍基催化剂甲烷化性能的影响[J].化工进展, 2014, 33(3):673-678. http://d.old.wanfangdata.com.cn/Periodical/hgjz201403030

    YANG Xia, TIAN Da-yong, SUN Shou-li, SUN Qi. Influence of zirconia-alumina composite on catalytic performance of nickel-based catalysts for methanation[J]. Chem Ind Eng Prog, 2014, 33(3):673-678. http://d.old.wanfangdata.com.cn/Periodical/hgjz201403030
    [20] VELU S, GANGWAL S K. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption[J]. Solid State Ionics, 2006, 177(7/8):803-811. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e8750af8bb4bbeec708efaf8dbcf9880
    [21] ISHIKAWA H, KONDO J N, DOMEN K. Hydrogen adsorption on Ru/ZrO2 studied by FT-IR[J]. J Phys Chem B, 1999, 103(16):3229-3234. doi: 10.1021/jp9842852
    [22] WANG D H, QIAN W H, ISHIHARA A, KABE T. Elucidation of sulfidation state and hydrodesulfurization mechanism on TiO2 catalysts using 35S radioisotope tracer methods[J]. J Catal, 2001, 203(2):322-328. doi: 10.1006/jcat.2001.3349
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  170
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-09
  • 修回日期:  2019-06-21
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-08-10

目录

    /

    返回文章
    返回