留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C掺杂ZrO2四方纯相粉体的甲醇溶剂热制备及热稳定性研究

孟员员 王亚珂 梁丽萍

孟员员, 王亚珂, 梁丽萍. C掺杂ZrO2四方纯相粉体的甲醇溶剂热制备及热稳定性研究[J]. 燃料化学学报(中英文), 2019, 47(10): 1273-1280.
引用本文: 孟员员, 王亚珂, 梁丽萍. C掺杂ZrO2四方纯相粉体的甲醇溶剂热制备及热稳定性研究[J]. 燃料化学学报(中英文), 2019, 47(10): 1273-1280.
MENG Yuan-yuan, WANG Ya-ke, LIANG Li-ping. Preparation and thermal stability of C-doped zirconia tetragonal particles by the methanol-thermal method[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1273-1280.
Citation: MENG Yuan-yuan, WANG Ya-ke, LIANG Li-ping. Preparation and thermal stability of C-doped zirconia tetragonal particles by the methanol-thermal method[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1273-1280.

C掺杂ZrO2四方纯相粉体的甲醇溶剂热制备及热稳定性研究

基金项目: 

山西省研究生联合培养基地人才培养项目 2017JD33

山西省研究生联合培养基地人才培养项目 2018JD34

详细信息
  • 中图分类号: O642

Preparation and thermal stability of C-doped zirconia tetragonal particles by the methanol-thermal method

Funds: 

Talent Training Project of Shanxi Postgraduate Joint Training Base 2017JD33

Talent Training Project of Shanxi Postgraduate Joint Training Base 2018JD34

More Information
  • 摘要: 在ZrO(NO32·2H2O-CO(NH22-CH3OH溶剂热过程中,水的缺乏使得甲醇通过其甲氧基与Zr4+发生亲核取代或以分子配位,直接参与锆盐的水解-缩聚反应,形成具有[ZrOz(OH)p(OCH3q·rCH3OH]n结构的无机聚合物;同时,甲醇对聚合物低的溶解能力强烈抑制了Ostwald熟化过程,阻碍了溶剂热产物的晶化与热力学支持的结构重排。尿素通过其水解作用与锆盐竞争体系中的水及锆物种骨架上的羟基,这不仅导致无机聚合物中Zr-O-Zr键合相对Zr-OH键合的比例增加,使得溶剂热产物发生结构重排的几率进一步下降;而且也一定程度上增加了溶剂热产物中甲氧基的含量。含有大量甲氧基团的溶剂热产物经400 ℃焙烧后,形成C掺杂ZrO2。C掺杂与溶剂效应共同稳定了ZrO2的四方相。在500-600 ℃中等温度、空气气氛焙烧过程中,C掺杂ZrO2四方相结构显示了良好的热稳定性;提高焙烧温度至700 ℃,游离于颗粒表面的C被完全氧化去除,固溶于晶格中的C也部分脱溶,导致了部分四方相失稳转变成单斜相。
  • 图  1  溶剂热产物经120 ℃烘干及400 ℃焙烧所得样品的XRD谱图

    Figure  1  XRD patterns of the solvothermal products after drying at 120 ℃ and calcination at 400 ℃

    a: CZ0-120; b: CZ5-120; c: CZ0-400; d: CZ5-400

    图  2  不同温度焙烧后粉体样品的XRD谱图

    Figure  2  XRD patterns of the powder samples after calcination at different temperatures

    a: CZ5-400; b: CZ5-500; c: CZ5-600; d: CZ5-700

    图  3  不同温度处理后粉体样品的SEM照片与EDS分析

    Figure  3  SEM images and EDS analysis results of the powder samples after heat-treating at different temperatures

    (a): CZ5-120; (b): CZ5-400; (c): CZ5-700; (d): CZ0-400; (e): EDS point analysis result on the irregular particles in sample CZ5-400

    图  4  样品CZ5-120与CZ0-120的TG曲线

    Figure  4  TG curves of the samples CZ5-120 and CZ0-120

    图  5  典型样品(初始溶液中尿素与锆盐物质的量比为5:1, 400 ℃焙烧)的XPS谱图

    Figure  5  XPS analysis results of the typical sample (molar ratio of urea to zirconium in the initial solution of 5:1, calcined at 400 ℃)

    (a)full range spectrum, (b), (c), (d) high-resolution spectra of the electron-binding energy peaks of C 1s, Zr 3d, O 1s

    表  1  基于XRD分析计算的四方与单斜相ZrO2的体积分数及平均晶粒粒径

    Table  1  Volume fraction and mean crystalline size data of the tetragonal and monoclinic ZrO2 derived from XRD analysis results

    Sample CZ5-400 CZ5-500 CZ5-600 CZ5-700 CZ0-400
    φt/% 100 93.5 89.0 71.8 94.8
    φm/% 0 6.5 11.0 28.2 5.2
    dt/nm 5.3 7.9 9.8 11.3 5.5
    dm/nm - - 16.1 26.6 -
    下载: 导出CSV

    表  2  样品的元素定量分析与计算结果

    Table  2  Mass fraction of the elements in the samples

    Sample CZ5-120 CZ5-400 CZ5-700 CZ0-400
    Mass fraction of C w/% 4.40 0.34 0.17 0.12
    Mass fraction of H w/% 1.94 0.27 0.07 0.29
    Mass fraction of N w/% 0.04 0.03 0.03 0.05
    Mass fraction of S w/% 0.02 0.02 0.04 0.02
    Mass fraction of Zr w/% 66.42 73.02 73.97 71.51
    Mass fraction of O w/% 27.18 26.32 25.72 28.01
    NC:NO:NZr 0.50:2.33:1 0.04:2.05:1 0.02:1.98:1 0.01:2.23:1
    NC:NO:NZr is the atomic number ratio of C, O and Zr derived from the elemental analysis and TG analysis results
    下载: 导出CSV

    表  3  样品的XPS定量分析

    Table  3  The quantitative analysis results of XPS

    Sample CZ5-120 CZ5-400 CZ5-700 CZ0-400
    Atom fraction of C w/% 56.36 45.76 33.32 31.87
    Atom fraction of O w/% 36.41 42.36 49.60 53.18
    Atom fraction of Zr w/% 7.23 11.88 17.08 14.94
    Atom fraction of N w/% <1.0 <1.0 <1.0 <1.0
    NC:NO:NZr 7.79:5.04:1 3.85:3.57:1 1.95:2.90:1 2.13:3.56:1
    NC:NO:NZr is the atomic number ratio of C, O and Zr derived from XPS analysis results
    下载: 导出CSV
  • [1] JUNG K T, BELL A T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia[J]. J Mol Catal A-Chem, 2000, 163:27-42. doi: 10.1016/S1381-1169(00)00397-6
    [2] CHARY K V R, RAMESH K, NARESH D, RAO P V R, RAO R A, RAO V V. The effect of zirconia polymorphs on the structure and catalytic properties of V2O5/ZrO2 catalysts[J]. Catal Today, 2009, 141(1/2):187-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf86126d9411e862291753bc3c12ca55
    [3] RUPPERT A M, NIEWIADOMSKI M, GRAMS J, KWAPIŃSKI W. Optimization of Ni/ZrO2 catalytic performance in thermochemical cellulose conversion for enhanced hydrogen production[J]. Appl Catal B:Environ, 2014, 145(1):85-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0af078c48bfc0d7ddef75ede6669e2e0
    [4] MIRANDA M C D, RAMÍREZ S A E, JURADO S G, VERA C R. Superficial effects and catalytic activity of ZrO2-SO42- as a function of the crystal structure[J]. J Mol Catal A-Chem, 2015, 398:325-335. doi: 10.1016/j.molcata.2014.12.015
    [5] LI W Z, ZHAO Z K, JIAO Y H, WANG G R. Morphology effect of zirconia support on the catalytic performance of supported Ni catalysts for dry reforming of methane[J]. Chin J Catal, 2016, 37(12):2122-2133. doi: 10.1016/S1872-2067(16)62540-8
    [6] FAN Y Q, CHENG S J, WANG H, TIAN J, XIE S H, PEI Y, QIAO M H, ZONG B N. Pt-WOx on monoclinic or tetrahedral ZrO2:Crystal phase effect of zirconia on glycerol hydrogenolysis to 1, 3-propanediol[J]. Appl Catal B:Environ, 2017, 217:331-341. doi: 10.1016/j.apcatb.2017.06.011
    [7] HERNÁNDEZ S, GIONCO C, HUSAK T, CASTELLINO M, MUÑOZ-TABARES J A, TOLOD K, GIAMELLO E, PAGANINI M C, RUSSO N. Insights into the sunlight-driven water oxidation by Ce and Er-doped ZrO2[J]. Front Chem Sci Eng, 2018, 6:368.
    [8] LI W Z, HUANG H, LI H J, ZHANG W, LIU H C. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation[J]. Langmuir, 2008, 24:8358-8366. doi: 10.1021/la800370r
    [9] 李为臻, 刘海超.溶剂热法合成纯单斜和四方晶相氧化锆中的溶剂效应[J].物理化学学报, 2008, 24(12):2172-2178. doi: 10.3866/PKU.WHXB20081205

    LI Wei-zhen, LIU Hai-chao. Solvent effects on the solvothermal synthesis of pure monoclinic and tetragonal zirconia nanoparticles[J]. Acta Phy-Chim Sin, 2008, 24(12):2172-2178. doi: 10.3866/PKU.WHXB20081205
    [10] 李亚伟, 田彩兰, 赵雷, 李远兵, 金胜利, 李淑静.碳包纳米氧化锆粉体的制备及其晶型转变[J].硅酸盐学报, 2009, 37(8):1273-1276. doi: 10.3321/j.issn:0454-5648.2009.08.001

    LI Ya-wei, TIAN Cai-lan, ZHAO Lei, LI Yuan-bing, JIN Sheng-li, LI Shu-jing. Preparation and phase transformation of nano-sized zirconia powder surrounded by carbon[J]. J Chin Ceram Soc, 2009, 37(8):1273-1276. doi: 10.3321/j.issn:0454-5648.2009.08.001
    [11] 廖宁, 李亚伟, 桑绍柏, 金胜利, 李华军. ZrO2-C质耐火材料中碳对氧化锆的稳定作用[J].耐火材料, 2013, 47(5):329-333. doi: 10.3969/j.issn.1001-1935.2013.05.002

    LIAO Ning, LI Ya-wei, SANG Shao-bo, JIN Sheng-li, LI Hua-jun. Stabilization of carbon to zirconia in ZrO2-C refractories[J]. Refractories, 2013, 47(5):329-333. doi: 10.3969/j.issn.1001-1935.2013.05.002
    [12] 张国芳, 翟亭亭, 侯忠辉, 许剑轶, 武悦, 葛启录.纳米CeO2-xNx固溶体的光谱特征对其催化性能影响研究[J].光谱学与光谱分析, 2018, 38(10):3192-3198. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201810036

    ZHANG Guo-fang, ZHAI Ting-ting, HOU Zhong-hui, XU Jian-yi, WU Yue, GE Qi-lu. Research on the influence of spectrum characteristics on the catalysis effect of nanosized CeO2-xNx solid solutions[J]. Spectrosc Spect Anal, 2018, 38(10):3192-3198. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201810036
    [13] FOCA N, LISA G, RUSU I. Synthesis and characterization of some Cr(Ⅲ), Fe(Ⅲ) and Zr(Ⅳ) compounds with substituted o-hydroxy benzophenone[J]. J Therm Anal Calorim, 2004, 78:239-249. doi: 10.1023/B:JTAN.0000042171.81071.e3
    [14] 邱羽, 高濂.由硝酸盐尿素配合物前驱体制备过渡金属氮化物粉体的研究[J].无机材料学报, 2004, 19(1):63-68. doi: 10.3321/j.issn:1000-324X.2004.01.011

    QIU Yu, GAO Lian. Synthesis of transition metal nitride powders from metal-urea nitratecomplex precursors[J]. J Inorg Mater, 2004, 19(1):63-68. doi: 10.3321/j.issn:1000-324X.2004.01.011
    [15] PRIOR T J, KIFT R L. Synthesis and crystal structures of two metal urea nitrates[J]. J Chem Crystallogr, 2009, 39(8):558-563. doi: 10.1007/s10870-009-9517-0
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  40
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-25
  • 修回日期:  2019-08-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-10-10

目录

    /

    返回文章
    返回