留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃煤烟气重金属与铈改性CaO的相互作用机理研究

周新越 吴洋文 密腾阁 刘吉 徐明新 赵莉 陆强

周新越, 吴洋文, 密腾阁, 刘吉, 徐明新, 赵莉, 陆强. 燃煤烟气重金属与铈改性CaO的相互作用机理研究[J]. 燃料化学学报(中英文), 2020, 48(12): 1520-1529.
引用本文: 周新越, 吴洋文, 密腾阁, 刘吉, 徐明新, 赵莉, 陆强. 燃煤烟气重金属与铈改性CaO的相互作用机理研究[J]. 燃料化学学报(中英文), 2020, 48(12): 1520-1529.
ZHOU Xin-yue, WU Yang-wen, MI Teng-ge, LIU Ji, XU Ming-xin, ZHAO Li, LU Qiang. Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1520-1529.
Citation: ZHOU Xin-yue, WU Yang-wen, MI Teng-ge, LIU Ji, XU Ming-xin, ZHAO Li, LU Qiang. Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1520-1529.

燃煤烟气重金属与铈改性CaO的相互作用机理研究

基金项目: 

国家自然科学基金 51922040

国家自然科学基金 51876060

霍英东教育基金会 161051

中央高校基本业务费资助项目 2020DF01

详细信息
  • 中图分类号: X701

Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion

Funds: 

the National Natural Science Foundation of China 51922040

the National Natural Science Foundation of China 51876060

Grants from Fok Ying Tung Education Foundation 161051

Fundamental Research Funds for the Central Universities 2020DF01

More Information
  • 摘要: 氧化钙(CaO)作为一种吸附剂广泛应用于燃煤烟气重金属的净化,但其吸附效率有限,需要进一步改性提升。金属铈(Ce)改性可调整其表面电子分布,增强化学活性。基于此,本研究建立了Ce-CaO (100)周期性模型,研究了燃煤烟气中汞、硒、铅三类重金属污染物的吸附机理。结果表明,除Hg0在Ce-CaO (100)表面上的吸附为物理吸附外,其余重金属污染物均为化学吸附,Ce位点和O位点为重金属污染物的主要活性吸附位点,吸附分子与Ce-CaO (100)表面之间存在明显的电荷转移与强烈的相互作用。Ce掺杂改性提升了CaO (100)表面对重金属污染物的吸附能力,尤其对Se0、SeO2和HgCl2的捕集能力显著提高。
  • 图  1  Ce-CaO (100)超胞(3×3)周期性模型

    Figure  1  3×3 supercell Ce-CaO (100) periodic model

    图  2  HgCl2、HgO、SeO2和PbCl2分子吸附前的空间构型

    Figure  2  Configurations of HgCl2, HgO, SeO2 and PbCl2 molecules before adsorption

    图  3  Hg0在Ce-CaO (100)表面的吸附构型

    Figure  3  Adsorption configurations of Hg0 on Ce-CaO (100) surface

    图  4  HgCl2在Ce-CaO (100)表面的吸附构型

    Figure  4  Adsorption configurations of HgCl2 on Ce-CaO (100) surface

    图  5  HgO在Ce-CaO (100)表面的吸附构型

    Figure  5  Adsorption configurations of HgO on Ce-CaO (100) surface

    图  6  不同构型的局域态密度图

    Figure  6  PDOS of the different configurations

    (a): 1F; (b): 1G; (c): 1L
    4: O represents the O atom of HgO molecule

    图  7  不同构型的电子密度差图

    Figure  7  Electron density difference maps of different configurations

    (a): 1F; (b): 1G; (c): 1L

    图  8  Se0在Ce-CaO (100)表面的吸附构型

    Figure  8  Adsorption configurations of Se0 on Ce-CaO (100) surface

    图  9  SeO2在Ce-CaO (100)表面的吸附构型

    Figure  9  Adsorption configurations of SeO2 on Ce-CaO (100) surface

    图  10  不同构型的局域态密度图

    Figure  10  PDOS of different configurations

    (a): 2B; (b): 2F 6: O represents the O atom of SeO2 molecule

    图  11  不同构型的电子密度差图

    Figure  11  Electron density difference maps of different configurations

    (a): 2B; (b): 2F

    图  12  Pb0在Ce-CaO (100)表面的吸附构型

    Figure  12  Adsorption configurations of Pb0 on Ce-CaO (100) surface

    图  13  PbCl2在Ce-CaO (100)表面的吸附构型

    Figure  13  Adsorption configurations of PbCl2 on Ce-CaO (100) surface

    图  14  不同构型的局域态密度图

    Figure  14  PDOS of different configurations

    (a): 3A; (b): 3D

    图  15  不同构型的电子密度差图

    Figure  15  Electron density difference maps of different configurations

    (a): 3A; (b): 3D

    表  1  Hg0、HgCl2和HgO在Ce-CaO (100)表面吸附构型的几何参数和吸附能

    Table  1  Geometry parameters and adsorption energies of Hg0, HgCl2 and HgO on Ce-CaO (100) surface

    RHg-surface1 RHg-Cl2 RHg-O3 Ead /(kJ·mol-1)
    Hg0-Ce-CaO (100) 1A 3.315 - - -17.16
    1B 3.048 - - -26.85
    1C 3.433 - - -26.24
    1D 3.378 - - -19.52
    1E 3.497 - - -21.28
    1F 3.161 - - -28.03
    HgCl2-Ce-CaO (100) 1G 4.986 3.812 - -461.50
    1H 3.448 3.535 - -452.30
    1I 3.456 4.049 - -447.78
    1J 4.835 3.596 - -441.30
    HgO-Ce-CaO (100) 1K 3.286 - 2.799 -650.84
    1L 3.548 - 2.778 -652.15
    1M 3.257 - 2.82 -648.98
    1N 4.646 - 4.646 -647.92
    1: RHg-surface represents the distance between Hg atom and Ce-CaO surface; 2: RHg-Cl is the furthest distance between Hg atom and Cl atom in HgCl2 molecule; 3: RHg-O symbolizes the distance of Hg atom and O atom in HgO molecule
    下载: 导出CSV

    表  2  Se0和SeO2在Ce-CaO (100)表面吸附构型的几何参数和吸附能

    Table  2  Geometry parameters and adsorption energies of Se0 and SeO2 on Ce-CaO (100) surface

    RSe-surface5 Ead /(kJ·mol-1)
    Se0-Ce-CaO (100) 2A 2.634 -525.91
    2B 2.774 -529.18
    2C 2.896 -515.84
    2D 2.876 -465.89
    2E 2.716 -429.69
    SeO2-Ce-CaO (100) 2F 2.910 -437.93
    2G 3.168 -392.45
    2H 2.851 -398.34
    2I 3.185 -437.81
    5: RSe-surface represents the distance between Se atom and Ce-CaO surface
    下载: 导出CSV

    表  3  Pb0和PbCl2在Ce-CaO (100)表面吸附构型的几何参数和吸附能

    Table  3  Geometry parameters and adsorption energies of Pb0 and PbCl2 on Ce-CaO (100) surface

    RPb-surface7 Ead /(kJ·mol-1)
    Pb0-Ce-CaO (100) 3A 2.500 -276.73
    3B 3.339 -194.76
    3C 3.412 -199.82
    PbCl2-Ce-CaO (100) 3D 3.669 -282.08
    3E 2.396 -263.13
    7: RPb-surface represents the distance between Pb atom and Ce-CaO surface
    下载: 导出CSV
  • [1] DENG S, SHI Y, LIU Y, CHEN Z, WANG X F, CAO Q, LI S G, ZHANG F. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China[J]. Fuel Process Technol, 2014, 126: 469-475.
    [2] 郭胜利.燃煤重金属迁移转化特征及其污染控制研究[D].重庆: 重庆大学, 2014.

    GUO Sheng-li. Study on migration and transformation characteristics of heavy metals in coal combustion and its pollution control[D]. Chongqing: Chongqing University, 2014.
    [3] 乔岗杰, 刘轩, 赵元财, 刘红刚, 孔凡荣, 张锴.燃煤电厂典型重金属排放与控制进展[J].电站系统工程, 2020, 36(2): 1-4+8.

    QIAO Gang-jie, LIU Xuan, ZHAO Yuan-cai, LIU Hong-gang, KONG Fan-rong, ZHANG Kai. Progress in emission and control of typical heavy metals in coal-fired power plants[J]. Power Plant Syst Eng, 2020, 36(2): 1-4+8.
    [4] ZHANG Y L, ZHAO Y C, YANG Y J, LIU P F, LIU J, ZHANG J Y. DFT study on Hg0 adsorption over graphene oxide decorated by transition metals (Zn, Cu and Ni)[J]. Appl Surf Sci, 2020, 525: 146519.
    [5] YOO J M, KIM B S, LEE J C, KIM M S, NAM C W. Kinetics of the volatilization removal of lead in electric arc furnace dust[J]. Mater Trans, 2005, 46(2): 323-328.
    [6] YANG Y J, LIU J, WANG Z, MIAO S, DING J Y, YU Y N, ZHANG J C. A complete catalytic reaction scheme for Hg0 oxidation by HCl over RuO2/TiO2 catalyst[J]. J Hazard Mater, 2019, 373: 660-670.
    [7] MCNUTT M. Mercury and health[J]. Sci, 2013, 341: 1430-1430.
    [8] YANG J P, ZHAO Y C, MA S M, ZHU B B, ZHANG J Y, ZHENG C G. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environ Sci Technol, 2016, 50(21): 12040-12047.
    [9] HOU W H, ZHOU J S, QI P, GAO X, LUO Z Y. Effect of H2S/HCl on the removal of elemental mercury in syngas over CeO2-TiO2[J]. Chem Eng J, 2014, 241: 131-137.
    [10] FAN Y M, ZHOU Y Q, ZHU Z W, DU W, LI L L. Zerovalent selenium adsorption mechanisms on CaO surface: DFT calculation and experimental study[J]. J Phys Chem A, 2017, 121(39): 7385-7392.
    [11] FAN Y M, ZHUO Y Q, LOU Y, ZHU Z W, LI L L. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci, 2017, 413: 366-371.
    [12] XING J Y, WANG C B, ZOU C, ZHANG Y. DFT study of Se and SeO2 adsorbed on CaO (0 0 1) surface: Role of oxygen[J]. Appl Surf Sci, 2020, 510: 145488.
    [13] CHENG J F, ZENG H C, ZHANG Z H, XU M H. The effects of solid absorbents on the emission of trace elements, SO2, and NOx during coal combustion[J]. Int J Energy Res, 2001, 25(12): 1043-1052.
    [14] CLARKE L B. The fate of trace elements during coal combustion and gasification: An overview[J]. Fuel, 1993, 72(6): 731-736.
    [15] GHOSHDASTIDAR A, MAHULI S K, AGNIHOTRI R, FAN L. Selenium capture using sorbent powders: mechanism of sorption by hydrated lime[J]. Environ Sci Technol, 1996, 30(2): 447-452.
    [16] WANG K S, CHIANG K Y, LIN S M, TSAI C C, SUN C J. Effects of chlorides on emissions of toxic compounds in waste incineration: study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999, 38(8): 1833-1849.
    [17] WANG J, XIA S, YU L. Adsorption of Pb (Ⅱ) on the kaolinite (001) surface in aqueous system: A DFT approach[J]. Appl Surf Sci, 2015, 339: 28-35.
    [18] LOEF M, MENDOZA L F, WALACH H. Lead (Pb) and the risk of Alzheimer's disease or cognitive decline: A systematic review[J]. Toxin Rev, 2011, 30(4): 103-114.
    [19] NAVASACIEN A, GUALLAR E, SILBERGELD E K, ROTHENBERG S J. Lead exposure and cardiovascular disease-A systematic review[J]. Environ Health Perspect, 2007, 115(3): 472-482.
    [20] MARKUS J, MCBRATNEY A B. A review of the contamination of soil with lead: Ⅱ. Spatial distribution and risk assessment of soil lead[J]. Environ Int, 2001, 27(5): 399-411.
    [21] 马晓文, 李建军.燃煤电厂重金属污染与控制技术研究进展[J].四川化工, 2019, 22(1): 5-8.

    MA Xiao-wen, LI Jian-jun. Research progress of heavy metal pollution and control technology in coal-fired power plants[J]. Sichuan Chem Eng, 2019, 22(1): 5-8.
    [22] 郭胜利, 李东伟, 耿伟乐, 张建.调制碳酸钙对燃煤重金属As, Cd, Zn的排放控制[J].煤炭学报, 2015, 40(12): 2967-2973.

    GUO Sheng-li, LI Wei-dong, GENG Wei-le, ZHANG Jian. Emission control of heavy metals As, Cd, and Zn from coal combustion by calcined calcium carbonate[J]. Acta Coal Sin, 2015, 40(12): 2967-2973.
    [23] 刘晶, 郑楚光, 曾汉才, 张军营, 陆晓华.固体吸附剂控制燃煤重金属排放的实验研究[J].环境科学, 2003, 24(5): 23-27.

    LIU Jing, ZHENG Chu-guang, ZENG Han-cai, ZHANG Jun-ying, LU Xiao-hua. Experimental study on controlling heavy metal emission from coal combustion with solid adsorbents[J]. Environ Sci, 2003, 24(5): 23-27.
    [24] 李明晖.飞灰中未燃尽碳及氧化钙表面吸附砷的机理研究[D].北京: 华北电力大学, 2019.

    LI Ming-hui. Mechanism of arsenic adsorption on unburned carbon and calcium oxide in fly ash[D]. Beijing: North China Electric Power University, 2019.
    [25] 孙晓, 钱枫, 魏新鲜, 严军.添加CaO对燃煤重金属元素富集效果的影响[J].化工环保, 2016, 36(2): 205-210.

    SUN Xiao, QIAN Feng, WEI Xin-xian, YAN Jun. Effect of CaO addition on enrichment of heavy metals in coal combustion[J]. Chem Environ Prot, 2016, 36(2): 205-210.
    [26] 吴晗.氧化钙基CO2吸附剂的改性研究[D].上海: 华东理工大学, 2013.

    WU Han. Modification of CaO based CO2 adsorbent[D]. Shanghai: East China University of science and technology, 2013.
    [27] LANG J H, HAN Q, YANG J H, LI C S, YANG L L, ZHANG Y J, GAO M, WANG D D, CAO J. Fabrication and optical properties of Ce-doped ZnO nanorods[J]. J Appl Phys, 2010, 107: 074302.
    [28] DONG X, LIN Y C, MA Y Q, ZHAO L. Ce-doped UiO-67 nanocrystals with improved adsorption property for removal of organic dyes[J]. R Soc Chem, 2019, 9: 27674.
    [29] LU H, KHAN A, PRATSINIS S E, SMINRNIOTIS P G. Flame-made durable doped-CaO nanosorbents for CO2 capture[J]. Energy Fuels, 2009, 23(2): 1093-1100.
    [30] 张秀霞, 谢苗, 伍慧喜, 吕晓雪, 林日亿, 周志军.钙对焦炭非均相还原NO的微观作用机理: DFT研究[J].燃料化学学报, 2020, 48(2): 163-171.

    ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LV Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Micro mechanism of calcium on heterogeneous reduction of no by coke: DFT study[J]. Acta Fuel Chem, 2020, 48(2): 163-171.
    [31] 袁淑萍, 王建国, 李永旺, 彭少逸. Fe在丝光沸石骨架中取代位置的DFT研究[J].燃料化学学报, 2001, 29(S1): 252-254.

    YUAN Shu-ping, WANG Jian-guo, LI Yong-wang, PENG Shao-yi. DFT Study on the substitution sites of Fe in mordenite framework[J]. Acta Fuel Chem, 2001, 29(S1): 252-254.
    [32] LIU L, HONG D, GUO X. A study of metals promoted CaO-based CO2 sorbents for high temperature application by combining experimental and DFT calculations[J]. J CO2 Util, 2017, 22: 155-163.
    [33] FAN Y M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017, 420: 465-471.
    [34] FAN Y M, YAO J G, ZHANG Z L, SCEATS M, ZHUO Y Q, LI L L, MAITLAND G C, FENNELL P S. Pressurized calcium looping in the presence of steam in a spout-fluidized-bed reactor with DFT analysis[J]. Fuel Process Technol, 2018, 169: 24-41.
    [35] LI Z P, NIU S L, ZHAO G J, HAN K H, LI Y J, LU C M, CHENG S. Molecular simulation study of strontium doping on the adsorption of methanol on CaO (100) surface[J]. J Fuel Chem Technol, 2020, 48(2): 172-178.
    [36] ESRAFILI M D, NEMATOLLAHI P, ABDOLLAHPOUR H. A comparative DFT study on the CO oxidation reaction over Al-and Ge-embedded graphene as efficient metal-free catalysts[J]. Appl Surf Sci, 2016, 378: 418-425.
    [37] RAHMATHULLA S S, SIRAJUDDEEN M M S. Nitrogen induced half metallic ferromagnetism in oxides of calcium and cadmium: A DFT perspective[J]. Mater Chem Phys, 2020, 243: 122336.
    [38] DAI W, SHUI Z H, LI K. First-principle investigations of CaO (100) surface and adsorption of H2O on CaO (100)[J]. Comput Theor Chem, 2011, 967(1): 185-190.
    [39] GALLOWAY B, PADAK B. Effect of flue gas components on the adsorption of sulfur oxides on CaO (100)[J]. Fuel, 2017, 197: 541-550.
    [40] CHAKRADHAR A, LIU Y, SCHMIDT J, KADOSSOV E, BURGHAUS U. Adsorption and dissociation kinetics of alkanes on CaO (100)[J]. Surf Sci, 2011, 605(15/16): 1537-1543.
    [41] WANG W J, FAN L L, WANG G P, LI Y H. CO2 and SO2 sorption on the alkali metals doped CaO (100) surface: A DFT-D study[J]. Appl Surf Sci, 2017, 425: 972-977.
    [42] 闫广精, 王春波, 张月, 陈亮. H2O对SO2在CaO表面上吸附的影响理论研究[J].燃料化学学报, 2019, 47(10): 1163-1172.

    YAN Guang-jing, WANG Chun-bo, ZHANG Yue, CHENG Liang. Theoretical study on the effect of H2O on SO2 adsorption on CaO surface[J]. Acta Fuel Chem, 2019, 47(10): 1163-1172.
    [43] 徐沁, 陈大志.本征O空位缺陷对ZnO表面甲醛吸附性质影响的密度泛函理论研究[J].应用物理, 2020, 10(6): 8.

    XU Qing, CHENG Da-zhi. Density functional theory study on the effect of intrinsic O vacancy defects on formaldehyde adsorption on ZnO surface[J]. Appl Phys, 2020, 10(6): 8.
    [44] MILMAN V, REFSON K, CLARK S J, PICKARD C J, YATES J R, GAO S P, HASNIP P J, PROBERT M I J, PERLOV A, SEGALL M D. Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation[J]. J Mol Struct: THEOCHEM, 2010, 954(1/3): 22-35.
    [45] CHEN H, CHOI Y, LIU M L, LIN M C. A theoretical study of surface reduction mechanisms of CeO2 (111) and (110) by H2[J]. Chem Phys Chem, 2007, 8(6): 849-855.
    [46] LOSCHEN C, CARRASCO J, NEYMAN K M, ILLAS F. First-principles LDA+U and GGA+ U study of cerium oxides: Dependence on the effective U parameter[J]. Phys Rev B, 2007, 75(3): 035115.
    [47] WANG K S, CHIANG K Y, LIN S M, TSAI C C, SUN C J. Effects of chlorides on emissions of toxic compounds in waste incineration: Study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999, 38(8), 1833-1849.
    [48] XIN G, ZHAO P, ZHENG C. Theoretical study of different speciation of mercury adsorption on CaO (001) surface[J]. Proc Combust Inst, 2009, 32(2): 2693-2699.
    [49] FAN Y M, ZHUO Y Q, LOU Y, ZHU Z W, LI L L. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci, 2017, 413: 366-371.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  72
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 修回日期:  2020-10-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回