留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Catalytic decomposition of N2O over Y-Co3O4 composite oxides prepared by one-step hydrothermal method

ZHAO Tian-qi GAO Qiang LI He-jian XU Xiu-feng

赵天琪, 高强, 李和健, 徐秀峰. 一步水热合成Y-Co3O4复合氧化物催化剂及催化分解N2O[J]. 燃料化学学报(中英文), 2019, 47(4): 446-454.
引用本文: 赵天琪, 高强, 李和健, 徐秀峰. 一步水热合成Y-Co3O4复合氧化物催化剂及催化分解N2O[J]. 燃料化学学报(中英文), 2019, 47(4): 446-454.
ZHAO Tian-qi, GAO Qiang, LI He-jian, XU Xiu-feng. Catalytic decomposition of N2O over Y-Co3O4 composite oxides prepared by one-step hydrothermal method[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 446-454.
Citation: ZHAO Tian-qi, GAO Qiang, LI He-jian, XU Xiu-feng. Catalytic decomposition of N2O over Y-Co3O4 composite oxides prepared by one-step hydrothermal method[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 446-454.

一步水热合成Y-Co3O4复合氧化物催化剂及催化分解N2O

基金项目: 

Shandong Natural Science Foundation ZR2017MB020

Graduate Innovation Foundation of Yantai University YDYB1909

详细信息
  • 中图分类号: O643.3

Catalytic decomposition of N2O over Y-Co3O4 composite oxides prepared by one-step hydrothermal method

Funds: 

Shandong Natural Science Foundation ZR2017MB020

Graduate Innovation Foundation of Yantai University YDYB1909

More Information
  • 摘要: 用一步水热、分步水热、浸渍等方法分别制备Y-Co3O4复合氧化物,用于催化分解N2O的反应,其中,一步水热法制备的催化剂活性较高。再用一步水热法制备了不同Y/Co物质的量比的Y-Co3O4复合氧化物,在优化出的催化剂(0.03Y-Co3O4)表面浸渍K2CO3溶液,制备K改性催化剂(0.02K/0.03Y-Co3O4)。用X射线衍射(XRD)、N2物理吸附、H2程序升温还原(H2-TPR)、O2程序升温脱附(O2-TPD)、扫描电镜(SEM)、X射线光电子谱(XPS)等技术表征催化剂结构。研究发现,Co3O4和Y-Co3O4同为尖晶石结构,但Y-Co3O4的催化活性显著高于Co3O4。K改性增加了催化剂表面的活性位(Co2+),还有利于吸附氧的脱除,从而提高了催化剂活性。在无氧无水、有氧无水、有氧有水气氛中,K改性催化剂上的N2O全分解温度分别为325、350、375 ℃,催化剂活性较高。有氧有水气氛350 ℃连续反应50 h,K改性催化剂上N2O分解率保持90%以上,稳定性较高。研究发现,Y-Co3O4及K改性催化剂上N2O分解反应的Ea和lnA之间存在动力学补偿效应。
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  XRD patterns of 0.03Y-Co3O4 catalysts prepared by different methods

    a: one step hydrothermal method; b: two step hydrothermal method; c: impregnation

    Figure  2  N2O conversions on 0.03Y-Co3O4 catalysts prepared by different methods

    Figure  3  H2-TPR profiles of 0.03Y-Co3O4 catalysts prepared by different methods

    a: one step hydrothermal method; b: two step hydrothermal method; c: impregnation

    Figure  4  XRD patterns of Y-Co3O4 catalysts with various Y/Co molar ratios

    a: Y/Co=0 (Co3O4); b: Y/Co=0.01; c: Y/Co=0.02; d: Y/Co=0.03; e: Y/Co=0.04; f: Y/Co=0.05

    Figure  5  SEM images of Y-Co3O4 catalysts with various Y/Co molar ratios

    a: Y/Co=0 (Co3O4); b: Y/Co=0.01; c: Y/Co=0.03; d: Y/Co=0.05

    Figure  6  N2O conversions on Y-Co3O4 catalysts with various Y/Co molar ratios

    Figure  7  XPS spectra of Y-Co3O4 catalysts with various Y/Co molar ratios

    a: Y/Co=0 (Co3O4); b: Y/Co=0.01; c: Y/Co=0.03; d: Y/Co=0.05

    Figure  8  H2-TPR profiles of Y-Co3O4 catalysts with various Y/Co molar ratios

    a: Y/Co=0 (Co3O4); b: Y/Co=0.01; c: Y/Co=0.02; d: Y/Co=0.03; e: Y/Co=0.04; f: Y/Co=0.05

    Figure  9  O2-TPD profiles of Y-Co3O4 catalysts with various Y/Co molar ratios

    a: Y/Co=0 (Co3O4); b: Y/Co=0.01; c: Y/Co=0.02; d: Y/Co=0.03; e: Y/Co=0.04; f: Y/Co=0.05

    Figure  10  N2O conversions on 0.03Y-Co3O4 and K-modified catalysts under various atmospheres

    ■: 0.03Y-Co3O4; ●: 0.03Y-Co3O4 (O2); ▲: 0.03Y-Co3O4 (O2+H2O); ▼: 0.02K/0.03Y-Co3O4; ◆: 0.02K/0.03Y-Co3O4(O2); ◀: 0.02K/0.03Y-Co3O4(O2+H2O)

    Figure  11  Catalytic stability of Y-Co3O4 and K-modified catalysts for N2O decomposition in co-presence of oxygen and steam at 350 ℃

    Figure  12  XPS spectra of K-modified and un-modified Y-Co3O4 catalysts

    a: 0.03Y-Co3O4; b: 0.02K/0.03Y-Co3O4

    Table  1  Specific surface area of Y-Co3O4 catalysts with various Y/Co molar ratios

    Y-Co3O4 catalystSpecific surface area A/(m2·g-1)
    Co3O428.5
    Y/Co=0.0147.7
    Y/Co=0.0261.2
    Y/Co=0.0372.7
    Y/Co=0.0470.8
    Y/Co=0.0580.3
    下载: 导出CSV

    Table  2  Kinetic data of N2O decomposition on Y-Co3O4 catalysts with various Y/Co molar ratios

    Catalystk/s-1Ea/(kJ·mol-1)lnA
    275 ℃300 ℃325 ℃350 ℃375 ℃
    Co3O40.260.671.373.024.7386.717.7
    Y/Co=0.010.411.182.494.587.2979.916.9
    Y/Co=0.020.511.172.504.477.1578.516.6
    Y/Co=0.030.501.252.584.576.7777.616.4
    Y/Co=0.040.290.902.023.806.2890.218.7
    Y/Co=0.050.260.871.823.495.8190.718.7
    下载: 导出CSV

    Table  3  Kinetic data of N2O decomposition over 0.03Y-Co3O4 and K-modified catalysts under various reaction atmospheres

    Reaction atmospheres0.03Y-Co3O4 catalyst0.02K/0.03Y-Co3O4 catalyst
    Ea /(kJ·mol-1)lnAEa /(kJ·mol-1)lnA
    1%N2O+Ar77.616.463.915.5
    1%N2O+2%O2+Ar91.618.776.618.0
    1%N2O+2%O2+8.2%H2O+Ar110.020.686.819.2
    下载: 导出CSV
  • [1] REILLY J, PRINN R, HARNISCH J, FITZMAURICE J, JACOBY H, KICKLIGHTER D, MELILLO J, STONE P, SOKOLOV A, WANG C. Multi-gas assessment of the Kyoto Protocol[J]. Nature, 1999, 401:549-555. doi: 10.1038/44069
    [2] ZHENG L, LI H J, XU X F. Catalytic decomposition of N2O over Mg-Co composite oxides hydrothermally prepared by using carbon sphere as template[J]. J Fuel Chem Technol, 2018, 46(5):569-577 doi: 10.1016/S1872-5813(18)30024-0
    [3] YAN L, REN T, WANG X L, JI D, SUO J S. Catalytic decomposition of N2O over MxCo1-xCo2O4(M=Ni, Mg) spinel oxides[J]. Appl Catal B:Environ, 2003, 45(2):85-90. doi: 10.1016/S0926-3373(03)00174-7
    [4] IVANOVA Y A, SUTORMINA E F, ISUPOVA L A, ROGOV V A. Effect of the composition of NixCo3-xO4(x =0-0.9) oxides on their catalytic activity in the low-temperature reaction of N2O decomposition[J]. Kinet Catal, 2018, 59(3):365-370.
    [5] DOU Z, ZHANG H J, PAN Y F, XU X F. Catalytic decomposition of N2O over potassium-modified Cu-Co spinel oxides[J]. J Fuel Chem Technol, 2014, 42(2):238-245. doi: 10.1016/S1872-5813(14)60016-5
    [6] FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels CuxCo3-xO4 as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Appl Catal B:Environ, 2015, 176/177:298-305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32c40fec229970f8343d2616d47ad12c
    [7] WANG Y Z, HUO X B, ZHANG K, WEI X H, ZHAO Y X. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catal Commun, 2018, 111:70-74. doi: 10.1016/j.catcom.2018.04.004
    [8] TURSUN M, WANG X P, ZHANG F, YU H B. Bi-Co3O4 catalyzing N2O decomposition with strong resistance to CO2[J]. Catal Commun, 2015, 65:1-5. doi: 10.1016/j.catcom.2015.02.013
    [9] YU H B, TURSUN M, WANG X P, WU X X. Pb0.04Co catalyst for N2O decomposition in presence of impurity gases[J]. Appl Catal B:Environ, 2016, 185:110-118. doi: 10.1016/j.apcatb.2015.12.011
    [10] YU H B, WANG X P, WU X X, CHEN Y. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulated real reaction conditions[J]. Chem Eng J, 2018, 334:800-806. doi: 10.1016/j.cej.2017.10.079
    [11] KIM M J, LEE S J, RYU I S, JEON M W, MOON S H, ROH H S, JEON S G. Catalytic decomposition of N2O over cobalt based spinel oxides:The role of additives[J]. Mol Catal, 2017, 422:202-207.
    [12] XUE L, HE H, LIU C, ZHANG C B, ZHANG B. Promotion effects and mechanism of alkali metals and alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition[J]. Environ Sci Technol, 2009, 43(3):890-895. doi: 10.1021/es801867y
    [13] DZIEMBAJR, ZAITZ MM, RUTKOWSKAM, MOLENDAM, CHMIELARZL.Nanostructured Co-Ce-O systems for catalytic decomposition of N2O[J]. Catal Today, 2012, 191(1):121-124. doi: 10.1016/j.cattod.2012.02.045
    [14] YOU Y, CHANG H, MA L, GUO L, QIN X, LI J Y, LI J H. Enhancement of N2O decomposition performance by N2O pretreatment over Ce-Co-O catalyst[J]. Chem Eng J, 2018, 347:184-192. doi: 10.1016/j.cej.2018.04.081
    [15] ABUZIED B M, BAWAKED S M, KOSA S A, SCHWIEGER W. Effect of Pr, Sm, and Tb doping on the morphology, crystallite size, and N2O decomposition activity of Co3O4 nanorods[J]. J Nanomater, 2015, 56(12):1417-1423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004122728
    [16] GRANGER P, ESTEVES P, KIEGER S, NAVASCUES L, LECLERCQ G. Effect of yttrium on the performances of zirconia based catalysts for the decomposition of N2O at high temperature[J]. Appl Catal B:Environ, 2006, 62:236-243. doi: 10.1016/j.apcatb.2005.07.015
    [17] ABU-ZIED B M, BAWAKED S M, KOSA S A, ALI T T, SCHWIEGER W, AQLAN F M. Effects of Nd-, Pr-, Tb-and Y-doping on the structural, textural, electrical and N2O decomposition activity of mesoporous NiO nanoparticles[J]. Appl Surf Sci, 2017, 419:399-408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ec49120e4200154b11a1ad6fe130f0f7
    [18] ABU-ZIED B M, BAWAKED S M, KOSA S A, SCHWIEGER W. Impact of Gd-, La-, Nd-and Y-doping on the textural, electrical conductivity and N2O decomposition activity of CuO catalyst[J]. Int J Electrochem Sci, 2016, 11:2230-2246.
    [19] QIU Y J, HUANG S Q, PANG Z T, SONG Y J, WANG X C, LI C Q, WANG H. Catalytic decomposition of N2O over CuYO/γ-Al2O3 catalysts[J]. Environ Chem, 2018, 37(7):1591-1598. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201807016
    [20] LIU Z M, HE C X, CHEN B H, LIU H Y. CuO-CeO2 mixed oxide catalyst for the catalytic decomposition of N2O in the presence of oxygen[J]. Catal Today, 2017, 297:78-83. doi: 10.1016/j.cattod.2017.05.074
    [21] PAN Y F, FENG M, CUI X, XU X F. Catalytic activity of alkali metal doped Cu-Al mixed oxides for N2O decomposition in the presence of oxygen[J]. J Fuel Chem Technol, 2012, 40(5):601-607. doi: 10.1016/S1872-5813(12)60024-3
    [22] STELMACHOWSKI P, MANIAK G, KOTARBA A, SOJKA Z. Strong electronic promotion of Co3O4 towards N2O decomposition by surface alkali dopants[J]. Catal Commun, 2009, 10(7):1062-1065. doi: 10.1016/j.catcom.2008.12.057
    [23] LI H J, ZHENG L, ZHAO T Q, XU X F. Effect of preparation parameters on the catalytic performance of hydrothermally synthesized Co3O4 in the decomposition of N2O[J]. J Fuel Chem Technol, 2018, 46(6):717-724. doi: 10.1016/S1872-5813(18)30031-8
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  34
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-08
  • 修回日期:  2019-03-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-04-10

目录

    /

    返回文章
    返回