留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co掺杂铁基氧化物吸附剂燃煤烟气脱汞实验研究

王永兴 黄亚继 董璐 袁琦 丁守一 程好强 王圣 段钰锋

王永兴, 黄亚继, 董璐, 袁琦, 丁守一, 程好强, 王圣, 段钰锋. Co掺杂铁基氧化物吸附剂燃煤烟气脱汞实验研究[J]. 燃料化学学报(中英文), 2020, 48(7): 785-794.
引用本文: 王永兴, 黄亚继, 董璐, 袁琦, 丁守一, 程好强, 王圣, 段钰锋. Co掺杂铁基氧化物吸附剂燃煤烟气脱汞实验研究[J]. 燃料化学学报(中英文), 2020, 48(7): 785-794.
WANG Yong-xing, HUANG Ya-ji, DONG Lu, YUAN Qi, DING Shou-yi, CHENG Hao-qiang, WANG Sheng, DUAN Yu-feng. Experimental study on mercury removal of coal-fired flue gas over Co-doped iron-based oxide sorbent[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 785-794.
Citation: WANG Yong-xing, HUANG Ya-ji, DONG Lu, YUAN Qi, DING Shou-yi, CHENG Hao-qiang, WANG Sheng, DUAN Yu-feng. Experimental study on mercury removal of coal-fired flue gas over Co-doped iron-based oxide sorbent[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 785-794.

Co掺杂铁基氧化物吸附剂燃煤烟气脱汞实验研究

基金项目: 

国家重点研发计划 2016YFC0201105

详细信息
  • 中图分类号: X511

Experimental study on mercury removal of coal-fired flue gas over Co-doped iron-based oxide sorbent

Funds: 

the National Key Research and Development Projec 2016YFC0201105

More Information
  • 摘要: 使用柠檬酸法制备了Co掺杂的铁基氧化物(FeCo)吸附剂,通过固定床脱汞实验装置系统考察了FeCo吸附剂的脱汞性能,并利用比表面积(BET)、X射线衍射(XRD)、H2-程序升温还原(H2-TPR)、傅里叶红外光谱(FT-IR)、X射线光电子能谱(XPS)等表征手段分析吸附剂的物理化学特性。结果表明,α-Fe2O3中掺入Co后,比表面积、孔结构特性均得到改善,且氧化还原性能也相应提升;FeCo吸附剂在200-250℃获得最高约97%的脱汞效率;烟气中O2和NO的存在有助于FeCo吸附剂对Hg0的脱除,而SO2和H2O则抑制FeCo吸附剂对Hg0的脱除,同时NO能削弱SO2对FeCo脱汞的抑制作用。在脱汞过程中,FeCo吸附剂表面的活性组分Fe3+、Co3+和O*均消耗,参与了Hg0氧化反应,且吸附剂表面生成了HgO。在含SO2气氛中进行脱汞反应后,FeCo吸附剂表面发生硫酸盐化,从而削弱了吸附剂的脱汞性能,汞在吸附剂表面以HgO和HgSO4形式存在。
  • 图  1  固定床脱汞实验装置示意图

    Figure  1  Fixed bed system of mercury adsorption test

    图  2  载体和催化剂的XRD谱图

    Figure  2  XRD patterns of the supports and catalysts

    图  3  样品的N2吸附-脱附曲线

    Figure  3  N2 adsorption-desorption curves of the samples

    图  4  样品的H2-TPR谱图

    Figure  4  H2-TPR profiles of the samples

    图  5  新鲜吸附剂表面Fe 2p (a)、Co 2p (b)和O 1s (c)的XPS谱图

    Figure  5  Fe 2p (a), Co 2p (b), and O 1s (c) XPS profiles of the fresh sorbents

    图  6  α-Fe2O3掺杂不同金属对Hg0脱除性能的影响(反应工况:N2+5%O2)

    Figure  6  Effect of different metals doping on Hg0 removal performance over α-Fe2O3 (reaction condition: N2+5%O2)

    : α-Fe2O3; : FeCo; : FeCu; : FeMn; : FeCr

    图  7  O2对FeCo吸附剂Hg0脱除性能的影响(反应工况:200℃)

    Figure  7  Effect of O2 on Hg0 removal performance over FeCo sorbent (reaction condition: 200℃)

    图  8  NO对FeCo吸附剂Hg0脱除性能的影响(反应工况:200℃)

    Figure  8  Effect of NO on Hg0 removal performance over FeCo sorbent (reaction condition: 200℃)

    图  9  SO2对FeCo吸附剂Hg0脱除性能的影响(反应工况:200℃)

    Figure  9  Effect of SO2 on Hg0 removal performance over FeCo sorbent (reaction condition: 200℃)

    图  10  H2O对FeCo吸附剂Hg0脱除性能的影响(反应工况:200℃)

    Figure  10  Effect of H2O on Hg0 removal performance over FeCo sorbent (reaction condition: 200℃)

    图  11  反应后吸附剂表面Fe 2p (a)、Co 2p (b)和O 1s (c)的XPS谱图

    Figure  11  Fe 2p (a), Co 2p (b), and O 1s (c) XPS profiles of the spent sorbents

    图  12  FeCo-S表面S 2p (a)和Hg 4f (c)及FeCo-O表面Hg 4f (b) XPS谱图

    Figure  12  S 2p (a) and Hg 4f (c) XPS profiles of the FeCo-S, and Hg 4f (b) XPS profiles of the FeCo-O sorbent

    表  1  样品的BET表征

    Table  1  BET results of the samples

    Sample ABET/(m2·g-1) vt/(cm3·g-1) dave/nm
    α-Fe2O3 24.57 0.19 26.52
    FeCo 30.46 0.21 20.59
    Co3O4 21.38 0.18 29.83
    下载: 导出CSV

    表  2  样品表面原子摩尔含量

    Table  2  Mole content of the atoms on the surface of samples Samples

    Sample Fe 2p /% Co 2p /% O 1s /%
    Fe2+/FeT Fe3+/FeT Co3+/CoT Co2+/CoT OL/OT O*/OT
    Fresh FeCo 37.2 62.8 47.2 52.8 50.7 49.3
    FeCo-O 49.1 50.9 56.3 43.7 57.2 42.3
    FeCo-S 41.3 58.7 51.6 48.4 53.4 46.2
    FeT represents Fe2++Fe3+, CoT represents Co2++Co3+, OT represents OL +O*
    下载: 导出CSV
  • [1] YANG Y J, LIU J, WANG Z. Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion[J]. Prog Energy Combust, 2020, 79:100844. doi: 10.1016/j.pecs.2020.100844
    [2] 周强, 段钰锋, 卢平.燃煤电厂吸附剂喷射脱汞技术的研究进展[J].化工进展, 2018, 37(11):4460-4467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201811044

    ZHOU Qiang, DUAN Yu-feng, LU Ping. Research progress on in-duct mercury removal by sorbent injection in power plant[J]. Chem Ind Eng Prog, 2018, 37(11):4460-4467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201811044
    [3] YANG J P, ZHANG M G, LI H L, QU W Q, ZHAO Y C, ZHANG J Y. Simultaneous NO reduction and Hg0 oxidation over La0.8Ce0.2MnO3 perovskite catalysts at low temperature[J]. Ind Eng Chem Res, 2018, 57(29):9374-9385. doi: 10.1021/acs.iecr.8b01431
    [4] YANG Z Q, LI H L, YANG J P, FENG S H, LIU X, ZHAO J X, QU W Q, LI P, FENG Y, LEE P, SHIH K. Nanosized copper selenide functionalized zeolitic imidazolate framework-8(CuSe/ZIF-8) for efficient immobilization of gas-phase elemental mercury[J]. Adv Funct Mater, 2019, 29(17):1807191. doi: 10.1002/adfm.201807191
    [5] ZHOU Q, LEI Y, LIU Y B, TAO X, LU P, DUAN Y F, WANG Y J. Gaseous elemental mercury removal by magnetic Fe-Mn-Ce sorbent in simulated flue gas[J]. Energy Fuels, 2018, 32(12):12780-12786. doi: 10.1021/acs.energyfuels.8b03445
    [6] ZHANG S B, ZHAO Y C, YANG J P, ZHANG J Y, ZHENG C G. Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas[J]. Chem Eng J, 2018, 348:618-629. doi: 10.1016/j.cej.2018.05.037
    [7] LIU Y, WANG Y J, WANG H Q, WU Z B. Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol-gel method[J]. Catal Commun, 2011, 12(14):1291-1294. doi: 10.1016/j.catcom.2011.04.017
    [8] CHEN G Y, ZHANG D, ZHANG A C, ZHANG Z H, LIU Z C, HOU L. CrOx-MnOx-TiO2 adsorbent with high resistance to SO2 poisoning for Hg0 removal at low temperature[J]. J Ind Eng Chem, 2017, 55:119-127. doi: 10.1016/j.jiec.2017.06.035
    [9] ZHAO L K, LI C T, DU X Y, ZENG G M, GAO L, ZHAI Y B, WANG T, ZHANG J Y. Effect of Co addition on the performance and structure of V/ZrCe catalyst for simultaneous removal of NO and Hg0 in simulated flue gas[J]. Appl Surf Sci, 2018, 437:390-399. doi: 10.1016/j.apsusc.2017.08.165
    [10] HUANG W J, XU H M, QU Z, ZHAO S J, CHEN W M, YAN N Q. Significance of Fe2O3 modified SCR catalyst for gas-phase elemental mercury oxidation in coal-fired flue gas[J]. Fuel Process Technol, 2016, 149:23-28. doi: 10.1016/j.fuproc.2016.04.007
    [11] BAUER I, KNoLKER H-J. Iron catalysis in organic synthesis[J]. Chem Rev, 2015, 115(9):3170-3387. doi: 10.1021/cr500425u
    [12] CHEN C, ZUO W Q, YANG J C, CUI H J, FU M L. Yolk-shell structured CoFe2O4 microspheres as novel catalysts for peroxymonosulfate activation for efficient degradation of butyl paraben[J]. RSC Adv, 2016, 6(103):101361-101364. doi: 10.1039/C6RA24101H
    [13] LIU T, MAN C Y, GUO X, ZHENG C G. Experimental study on the mechanism of mercury removal with Fe2O3 in the presence of halogens:Role of HCl and HBr[J]. Fuel, 2016, 173:209-216. doi: 10.1016/j.fuel.2016.01.054
    [14] MENG B, ZHAO Z B, WANG X Z, LIANG J J, QIU J S. Selective catalytic reduction of nitrogen oxides by ammonia over Co3O4 nanocrystals with different shapes[J]. Appl Catal B:Environ, 2013, 129:491-500. doi: 10.1016/j.apcatb.2012.09.040
    [15] GAO L, LI C T, LI S H, ZHANG W, DU X Y, HUANG L, ZHU Y C, ZHAI Y B, ZENG G M. Superior performance and resistance to SO2 and H2O over CoOx-modified MnOx/biomass activated carbons for simultaneous Hg0 and NO removal[J]. Chem Eng J, 2019, 371:781-795. doi: 10.1016/j.cej.2019.04.104
    [16] ZHANG A C, ZHENG W W, SONG J, HU S, LIU ZX, XIANG J. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature[J]. Chem Eng J, 2014, 236:29-38. doi: 10.1016/j.cej.2013.09.060
    [17] ZHANG X P, CUI Y Z, WANG J X, TAN B J, LI C F, ZHANG H, HE G H. Simultaneous removal of Hg0 and NO from flue gas by Co0.3-Ce0.35-Zr0.35O2 impregnated with MnOx[J]. Chem Eng J, 2017, 326:1210-1222. doi: 10.1016/j.cej.2017.06.014
    [18] SHI Y J, DENG S, WANG H M, HUANG J Y, LI Y K, ZHANG F, SHU X Q. Fe and Co modified vanadium-titanium steel slag as sorbents for elemental mercury adsorption[J]. RSC Adv, 2016, 6(19):15999-16009. doi: 10.1039/C5RA26712A
    [19] SHAO C Z, LIU X F, MENG D M, XU Q, GUO Y L, GUO Y, ZHAN W C, WANG L, LU G Z. Catalytic performance of Co-Fe mixed oxide for NH3-SCR reaction and the promotional role of cobalt[J]. RSC Adv, 2016, 6(70):66169-66179. doi: 10.1039/C6RA12025C
    [20] LI H H, WANG S K, WANG X, HU J J. Activity of CuCl2-modified cobalt catalyst supported on Ti-Ce composite for simultaneous catalytic oxidation of Hg0 and NO in a simulated pre-sco process[J]. Chem Eng J, 2017, 316:1103-1113. doi: 10.1016/j.cej.2017.02.052
    [21] ZHANG P, PAN W G, GUO R T, ZHU X B, LIU J, QIN L, SHE X L. The Mo modified Ce/TiO2 catalyst for simultaneous Hg0 oxidation and NO reduction[J]. J Energy Inst, 2019, 92(5):1313-1328. doi: 10.1016/j.joei.2018.10.003
    [22] APOSTOLESCU N, GEIGER B, HIZBULLAH K, JAN M T, KURETI S, REICHERT D, SCHOTT F, WEISWEILER W. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Appl Catal B:Environ, 2006, 62(1):104-114. http://www.sciencedirect.com/science/article/pii/S0926337305002857
    [23] LIU C X, GONG L, DAI R Y, LU M J, SUN T T, LIU Q, HUANG X G, HUANG Z. Mesoporous Mn promoted Co3O4 oxides as an efficient and stable catalyst for low temperature oxidation of CO[J]. Solid State Sci, 2017, 71:69-74. doi: 10.1016/j.solidstatesciences.2017.07.006
    [24] LI H H, WANG S K, WANG X, TANG N, PAN S W, HU J J. Comparative study of Co/TiO2, Co-Mn/TiO2 and Co-Mn/Ti-Ce catalysts for oxidation of elemental mercury in flue gas[J]. Chem Pap, 2017, 71(9):1569-1578. doi: 10.1007/s11696-017-0152-5
    [25] CHEN W, ZHANG Z A, BAO W Z, LAI Y Q, LI J, GAN Y Q, WANG J J. Hierarchical mesoporous γ-Fe2O3/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li-O2 batteries[J]. Electrochim Acta, 2014, 134:293-301. doi: 10.1016/j.electacta.2014.04.110
    [26] SMIRNIOTIS P G, SREEKANTH P M, PEND A, JENKINS R G. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2:A Comparison for Low-Temperature SCR of NO with NH3[J]. Ind Eng Chem Res, 2006, 45(19):6436-6443. doi: 10.1021/ie060484t
    [27] DONG L, HUANG Y J, CHEN H, LIU L Q, LIU C Q, XU L G, ZHA J R, WANG Y X, LIU H. Magnetic γ-Fe2O3-loaded attapulgite sorbent for Hg0 removal in coal-fired flue gas[J]. Energy Fuels, 2019, 33(8):7522-7533. doi: 10.1021/acs.energyfuels.9b01136
    [28] WU H Y, LI C T, ZHAO L K, ZHANG J, ZENG G M, XIE Y N, ZHANG X N, WANG Y. Removal of gaseous elemental mercury by cylindrical activated coke loaded with CoOx-CeO2 from simulated coal combustion flue gas[J]. Energy Fuels, 2015, 29(10):6747-6757. doi: 10.1021/acs.energyfuels.5b00871
    [29] LIU D J, ZHOU W G, WU J. Effect of Ce and La on the activity of CuO/ZSM-5 and MnOx/ZSM-5 composites for elemental mercury removal at low temperature[J]. Fuel, 2017, 194:115-122. doi: 10.1016/j.fuel.2016.12.076
    [30] 于贤群, 鲍静静, 姜小祥, 杨宏旻. Mn-TiO2催化剂烟气脱汞性能及反应机理[J].中国电机工程学报, 2015, 35(13):3331-3337. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201513016

    YU Xian-qun, BAO Jing-jing, JIANG Xiao-xiang, YANG Hong-min. Performance and mechanism of catalytic oxidation for mercury by Mn-doped TiO2 catalysts in flue gas[J]. Proc CSEE, 2015, 35(13):3331-3337. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201513016
    [31] ZHANG D, HOU L, CHEN G Y, ZHANG A C, WANG F H, WANG R R, LI C W. Cr Doping MnOx adsorbent significantly improving Hg0 removal and SO2 resistance from coal-fired flue gas and the mechanism investigation[J]. Ind Eng Chem Res, 2018, 57(50):17245-17258. doi: 10.1021/acs.iecr.8b04857
    [32] YANG W, LIU Y X, WANG, PAN J F. Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation[J]. Chem Eng J, 2017, 326:169-181. doi: 10.1016/j.cej.2017.05.106
    [33] SHAN Y, YANG W, LI Y, LIU Y X, PAN J F. Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas[J]. Sci Total Environ, 2019, 697:134049. doi: 10.1016/j.scitotenv.2019.134049
    [34] ZHANG X P, LI Z F, WANG J X, TAN B J, CUI Y Z, HE G H. Reaction mechanism for the influence of SO2 on Hg0 adsorption and oxidation with Ce0.1-Zr-MnO2[J]. Fuel, 2017, 203:308-315. doi: 10.1016/j.fuel.2017.04.065
    [35] WAN Q, DUAN L, HE K B, LI J H. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas[J]. Chem Eng J, 2011, 170(2):512-517. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b15df7cc054faf86a82ac352c510127b
    [36] LI Y, MURPHY P D, WU C Y, POWERS K, BONZONGO J J. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas[J]. Environ Sci Technol, 2008, 42(14):5304-5309. doi: 10.1021/es8000272
    [37] YANG S J, GUO Y F, YAN N Q, WU D Q, HE H P, XIE J K, QU Z, JIA J P. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Appl Catal B:Environ, 2011, 101(3):698-708. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=495c63f00ef74aa3031a167b713ddd3e
    [38] GAO L, LI C T, ZHANG J, DU X Y, LI S H, ZENG J W, YI Y Y, ZENG G M. Simultaneous removal of NO and Hg0 from simulated flue gas over CoOx-CeO2 loaded biomass activated carbon derived from maize straw at low temperatures[J]. Chem Eng J, 2018, 342:339-349. doi: 10.1016/j.cej.2018.02.100
    [39] SHEN B X, ZHU S W, ZHANG X, CHI G L, PATEL D, SI M, WU C F. Simultaneous removal of NO and Hg0 using Fe and Co co-doped Mn-Ce/TiO2 catalysts[J]. Fuel, 2018, 224:241-249. doi: 10.1016/j.fuel.2018.03.080
    [40] ZHANG A C, ZHANG Z H, LU H, LIU Z C, XIANG J, ZHOU C S, XING W B, SUN L S. Effect of promotion with Ru addition on the activity and SO2 resistance of MnOx-TiO2 adsorbent for Hg0 removal[J]. Ind Eng Chem Res, 2015, 5(11):2930-2939. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0147f4d8ac1da94d94c34490f8544b24
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  50
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-20
  • 修回日期:  2020-06-19
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回