留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of nano-scale nickel-tungsten catalysts by pH value control and application in hydrogenolysis of cellulose to polyols

XIAO Zhu-qian MAO Jian-wei JI Jian-bing SHA Ru-yi FAN Yu XING Chuang

肖竹钱, 毛建卫, 计建炳, 沙如意, 范煜, 邢闯. pH值调控构建的纳米Ni-W催化剂用于纤维素氢解制多元醇的研究[J]. 燃料化学学报(中英文), 2017, 45(6): 641-650.
引用本文: 肖竹钱, 毛建卫, 计建炳, 沙如意, 范煜, 邢闯. pH值调控构建的纳米Ni-W催化剂用于纤维素氢解制多元醇的研究[J]. 燃料化学学报(中英文), 2017, 45(6): 641-650.
XIAO Zhu-qian, MAO Jian-wei, JI Jian-bing, SHA Ru-yi, FAN Yu, XING Chuang. Preparation of nano-scale nickel-tungsten catalysts by pH value control and application in hydrogenolysis of cellulose to polyols[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 641-650.
Citation: XIAO Zhu-qian, MAO Jian-wei, JI Jian-bing, SHA Ru-yi, FAN Yu, XING Chuang. Preparation of nano-scale nickel-tungsten catalysts by pH value control and application in hydrogenolysis of cellulose to polyols[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 641-650.

pH值调控构建的纳米Ni-W催化剂用于纤维素氢解制多元醇的研究

基金项目: 

Scientific Research Project of Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing 2016KF0035

Science and Technology Project of Zhejiang Province 2017C37049

详细信息
  • 中图分类号: TQ352.1

Preparation of nano-scale nickel-tungsten catalysts by pH value control and application in hydrogenolysis of cellulose to polyols

Funds: 

Scientific Research Project of Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing 2016KF0035

Science and Technology Project of Zhejiang Province 2017C37049

More Information
    Corresponding author: MAO Jian-wei, Tel:0571-85070390, E-mail:zjhzmjw@163.com
  • 摘要: 采用等体积浸渍法制备了双金属Ni-W催化剂,并研究了制备过程中前驱体溶液pH值对活性的影响。柠檬酸和氢氧化钾分别作为酸碱调节剂将前驱体溶液pH值调节至0.83、1.00、3.09、5.00、7.03、8.97和11.0。纤维素氢解反应结果表明,当前驱体溶液的pH值为1.00时,在氢压为5.0 MPa、温度为518 K的反应条件下,得到低碳(C2,3)多元醇的总收率为74.5%。此外,通过BET和SEM表征了催化剂的物理性质。其比表面积为330-450 m2/g,且在高温煅烧下SBA-15仍保持良好的水热稳定性。TEM和SEM-EDX结果显示,催化剂粒子在载体表面分散性较好,但也有少量的聚集现象。XRD表征表明,NiO等物种的还原程度明显受到pH值的影响,且镍、钨物种的相态也存在着显著不同。
  • Figure  1  Pore distribution of Ni-W/SBA-15 analyzed by adsorption-desorption isotherms

    Figure  5  TEM images of 10%Ni-20%W/SBA-15 in different pH values

    (a): pH = 0.83; (b): pH = 5.00; (c): pH = 1.00

    Figure  2  XRD patterns of Ni-W/SBA-15 catalysts in different pH values

    ◆: metal Ni0; ▼: WO3; ▲: WO2

    Figure  3  SEM images of 10%Ni-20%W/SBA-15 (pH=1.00)

    Figure  4  Elements mapping images on the surface of SBA-15 by FESEM

    Figure  6  H2-TPR profiles of the Ni-W/SBA-15 catalysts

    Figure  7  Yield of low carbon polyols affected by solution pH value of catalyst

    Figure  8  Major and preferred cellulose transformation route in this work

    Figure  9  Reusability of Ni-W/SBA-15 impregnation

    Table  1  Physical properties of 10%Ni-20%W/SBA-15 catalysts prepared in diffirent pH values

    Table  2  Liquid production for cellulose hydrogenolysis over Ni-W/SBA-15 catalystsa

  • [1] JUBEN N C, GEORGE W H, JAMES A D. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbon to fuels and chemicals[J]. Angew Chem Int Ed, 2007, 46(38):7164-7183. doi: 10.1002/(ISSN)1521-3773
    [2] YABUSHITA M, KOBAYASHI H, FUKUOKA A. Catalytic transformation into platform chemicals[J]. Appl Catal B:Environ, 2014, 145(1):1-9. http://www.sciencedirect.com/science/article/pii/S0926337313000726
    [3] SCHWARTZ T J, O'NEILL B J, SHANKS B H, DUMESIC J A. Bridging the chemical and biological catalysis gap:Challenges and outlook for producing sustainable chemicals[J]. ChemInform, 2014, 45(31):2060-2069. doi: 10.1021/cs500364y?src=recsys&journalCode=accacs
    [4] WANGA Q, ZHANG T. One-pot conversion of cellulose to ethylene glycol with multi-functional tungsten-based catalysts[J]. Accounts Chem Res, 2013, 46(7):1377-1386. doi: 10.1021/ar3002156
    [5] JI N, ZHENG M Y, WANG A Q, ZHANG T, CHEN J G. Ni-promoted tungsten carbide for cellulose conversion:Effect of preparation methods[J]. ChemSusChem, 2012, 5(5):939-944. doi: 10.1002/cssc.201100575
    [6] PANG J F, ZHENG M Y, WANG A Q, ZHANG T. Catalytic hydrogenation of corn stalk to ethylene glycol and 1, 2-propylene glycol[J]. Ind Eng Chem Res, 2011, 50(11):6601-6608. doi: 10.1021/ie102505y
    [7] ABDEL-AZIM S M, ABOUL-GHEIT A K, AHMED S M, EL-DSOUKI D S, ABDEL-MOTTALEB M S. Preparation and application of mesoporous nanotitania photocatalysts using different templates and pH media[J]. Int J Photoenergy, 2014, 2014(5):1-6. https://www.hindawi.com/journals/ijp/2014/687597/
    [8] BAE J W, LEE Y J, PARK J Y, JUN K W. Influence of pH of the impregnation solution on the catalytic properties of Co/γ-alumina for Fischer-Tropsch synthesis[J]. Energy Fuels, 2008, 22(5):2885-2891. doi: 10.1021/ef800155v
    [9] HUANG Y P, DONG X Q, YU Y Z. The influence of surface xygen and hydroxyl groups on the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate on pure Pd(100):A DET study[J]. Appl Surf Sci, 2016, 388(12):455-460. http://www.sciencedirect.com/science/article/pii/S0169433215029311
    [10] LI G N, PIDKO E A, HENSEN J M. A periodic DFT study of glucose to fructose isomerization on tungstite (WO3 center dot H2O):Influence of group Ⅳ-Ⅳ dopants and cooperativity with hydroxyl groups[J]. ACS Catal, 2016, 6(7):4162-4169. doi: 10.1021/acscatal.6b00869
    [11] ENGELBREKT C, MALCHO P, ANDERSEN J, ZHANG L J, STAHL K, LI B, HU J, ZHANG J D. Selective synthesis of clinoatacammite Cu2(OH)3Cl and tenorite CuO nanoparticle by pH control[J]. J Nanopart Res, 2014, 16(8):2562-2574. doi: 10.1007/s11051-014-2562-4
    [12] LIU Q Y, LIAO Y H, WANG T J, CAI C L, ZHANG Q, TSUBAKI N, MA L L. One-pot transformation of cellulose to sugar alcohols over acidic metal phosphates combined with Ru/C[J]. Ind Eng Chem Res, 2014, 53(32):12655-12664. doi: 10.1021/ie5016238
    [13] SUN R Y, ZHENG M Y, PANG J F, LIU X, WANG J H, PAN X L, WANG A Q, WANG X D, ZHANG T. Selectivity-switchable conversion of cellulose to glycols over Ni-Sn catalysts[J]. ACS Catal, 2016, 6(1):191-201. doi: 10.1021/acscatal.5b01807
    [14] XIAO Z Q, GE Q W, XING C, JIANG C J, FANG S, JI J B, MAO J W. Self-reducing bi-functional Ni-W/SBA-15 catalyst for cellulose hydrogenolysis to low carbon polyols[J]. J Energy Chem, 2015, 25(3):434-444. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trqz201603014&dbname=CJFD&dbcode=CJFQ
    [15] KOSMULSKI M. The pH-dependent surface charging and points of zero charge[J]. J Colloid Interf Sci, 2011, 353(1):1-5. doi: 10.1016/j.jcis.2010.08.023
    [16] NGUYEN VAN T D, SUFIAN S, MANSOR N, YAHYA N. Characterization of carbon nanofibers treated with thermal nitrogen as a catalyst support using point of zero charge analysis[J]. J Nanomater, 2014, 2014(12):1-6. http://dl.acm.org/citation.cfm?id=2696444.2696445
    [17] LI H, FANG Z, LUO J, YANG S. Direct conversion of biomass components to the bio-fuel methyl levulinate catalyzed by acid-base bi-functional zirconia-zeolites[J]. Appl Catal B:Environ, 2017, 200:182-191. doi: 10.1016/j.apcatb.2016.07.007
    [18] ZHU S H, GAO X Q, ZHU Y L, ZHU Y F, ZHENG H Y, LI Y G. Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1, 2-peopanediol[J]. J Catal, 2013, 303(7):70-79. http://www.sciencedirect.com/science/article/pii/S0021951713001036
    [19] FABICOVICOVA K, LUCAS M, CLAUS P. From microcrystalline cellulose to hard-and softwood-based feedstocks:Their hydrogenolysis to polyols over a highly efficient ruthenium-tungsten catalyst[J]. Green Chem, 2015, 17(5):3075-3083. doi: 10.1039/C5GC00421G
    [20] PAN G Y, MA Y L, MA X X, SUN Y G, LV J M, ZHANG J L. Catalytic hydrogenation of corn stalk into polyols over Ni-W/MCM-41 catalyst[J]. Chem Eng J, 2016, 299(1):386-392. http://www.sciencedirect.com/science/article/pii/S1385894716305241
    [21] SUAREZ-TORILLO V A, SANTOLALLA-VARGAS C E, DE LOS REYES J A, VAZQUEZ-ZAVALA A, VRINAT M, GEANTET C. Influence of the solution pH in impregnation with citric acid and activity of Ni/W/Al2O3 catalysts[J]. J Mol Catal A:Chem, 2015, 404-405(s):36-46. http://www.sciencedirect.com/science/article/pii/S1381116915001442
    [22] LI Y P, LIAO Y H, CAO X F, WANG T J, MA L L, LONG J X, LIU Q Y, XUA Y. Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose[J]. Bio Bioenergy, 2015, 74(1):148-161. http://www.cabdirect.org/abstracts/20153145540.html
    [23] LEE S, ZHANG Z T, WANG X M, PFEFFERLE L D, HALLER G L. Characterization of multi-walled carbon nanotubes catalyst supports by point of zero charge[J]. Catal Today, 2011, 164(1):68-73. doi: 10.1016/j.cattod.2010.10.031
    [24] CAO Y L, WANG J W, KANG M Q, ZHU Y L. Efficient synthesis of ethylene glycol from cellulose over Ni-WO3/SBA-15 catalyst[J]. J Mol Catal A Chem, 2014, 381:46-53. doi: 10.1016/j.molcata.2013.10.002
    [25] ZHENG M Y, WANG A Q, JI N, PANG J F, WANG X D, ZHANG T. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010, 3(1):63-66. doi: 10.1002/cssc.v3:1
    [26] SUN R Y, ZHENG M Y, PANG J F, LIU X, WANG J H, PAN X L, WANG A Q, WANG X D, ZHANG T. Selectivity-switchable conversion of cellulose yo glycols over Ni-Sn catalysts[J]. ACS Catal, 2016, 6(1):191-201. doi: 10.1021/acscatal.5b01807
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  20
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-10
  • 修回日期:  2017-04-07
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-06-10

目录

    /

    返回文章
    返回