留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BiVO4/MOF复合材料的合成及其光催化性能

翟勃银 陈颖 梁宇宁 李永超 梁宏宝

翟勃银, 陈颖, 梁宇宁, 李永超, 梁宏宝. BiVO4/MOF复合材料的合成及其光催化性能[J]. 燃料化学学报(中英文), 2019, 47(4): 504-512.
引用本文: 翟勃银, 陈颖, 梁宇宁, 李永超, 梁宏宝. BiVO4/MOF复合材料的合成及其光催化性能[J]. 燃料化学学报(中英文), 2019, 47(4): 504-512.
ZHAI Bo-yin, CHEN Ying, LIANG Yu-ning, LI Yong-chao, LIANG Hong-bao. Modifying BiVO4 with metal-organic frameworks for enhanced photocatalytic activity under visible light[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 504-512.
Citation: ZHAI Bo-yin, CHEN Ying, LIANG Yu-ning, LI Yong-chao, LIANG Hong-bao. Modifying BiVO4 with metal-organic frameworks for enhanced photocatalytic activity under visible light[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 504-512.

BiVO4/MOF复合材料的合成及其光催化性能

基金项目: 

国家自然科学基金 51146008

详细信息
  • 中图分类号: TQ174

Modifying BiVO4 with metal-organic frameworks for enhanced photocatalytic activity under visible light

Funds: 

the National Natural Science Foundation of China 51146008

More Information
  • 摘要: 通过简单溶剂热法制备了一种新型复合光催化剂BiVO4/MIL-53(Fe);运用XRD、SEM/EDS、FT-IR、N2吸附-脱附和UV-vis DRS等手段对其进行表征,并对其光催化降解RhB活性进行了研究,提出了相应的光催化降解RhB的可能机理。结果表明,相较于单一BiVO4材料,复合催化剂的比表面积增大,且其光催化效率相较于纯BiVO4和MIL-53(Fe)也有了较大的提高;其中,BF-2复合材料的光催化活性最高,分别约为纯MIL-53(Fe)和BiVO4的5.2倍和8.1倍。同时,BiVO4/MIL-53(Fe)复合光催化剂经过四次循环实验后,仍能保持较稳定的光催化活性和结构。
  • 图  1  BiVO4/MIL-53(Fe)复合材料的理想合成示意图

    Figure  1  Synthesis diagram of BiVO4/MIL-53(Fe)

    图  2  BiVO4(a)、MIL-53(Fe)(b)、BF-2(c)的SEM照片和BF-2(d)的EDS谱图

    Figure  2  SEM images of BiVO4(a), MIL-53(Fe)(b), BF-2(c) and EDS spectra of BF-2(d)

    图  3  BiVO4、MIL-53(Fe)及BiVO4/MIL-53(Fe)复合材料的XRD谱图(a)和BiVO4/MIL-53(Fe)在5°-18°的XRD谱图(b)

    Figure  3  XRD patterns of BiVO4, MIL-53(Fe), and BiVO4/MIL-53(Fe) composite (a) and XRD patterns of BiVO4/MIL-53(Fe) at 5°-18° (b)

    图  4  BiVO4、MIL-53(Fe)及BiVO4/MIL-53(Fe)复合材料的FT-IR谱图

    Figure  4  FT-IR spectra of BiVO4, MIL-53(Fe)及BiVO4/MIL-53(Fe) composite materials

    图  5  MIL-53(Fe) (a)、BiVO4 (b)及BF-2复合材料的N2吸附-脱附等温线及孔径分布

    Figure  5  Nitrogen adsorption-desorption isotherms of MIL-53(Fe) (a), BiVO4 (b) and BF-2 (c)

    图  6  BiVO4、MIL-53(Fe)及BiVO4/MIL-53(Fe)复合材料的紫外可见漫反射光谱图(a)和(αhv)2与禁带宽度(hv)之间的关系图(b)

    Figure  6  UV-vis diffuse reflectance spectra of BiVO4, MIL-53(Fe) and BiVO4/MIL-53(Fe) (a) and relationships between (αhv)2 and photo energy (hv) (b)

    图  7  不同催化剂的光催化活性比较(a)和不同催化剂下光催化降解RhB的伪一阶动力学(b)

    Figure  7  Comparison of various catalysts in their photocatalytic activity under visible light irradiation (a) and the related pseudo first-order kinetic of RhB degradation lines (b)

    图  8  不同RhB浓度对光降解性能的影响(a)和降解不同RhB浓度的伪一阶动力学(b)

    Figure  8  Influence of RhB concentration on the photodegradation performance (a) and the pseudo first-order kinetic of RhB degradation in different RhB concentrations (b)

    图  9  BF-2光降解RhB的使用寿命(a)和反应前后的XRD谱图(b)

    Figure  9  Recyclability of BF-2 for the RhB photodegradation (a) and XRD patterns of BF-2 samples before and after the reaction tests (b)

    图  10  可见光照射下BiVO4/MIL-53(Fe)复合材料降解RhB的示意图

    Figure  10  A schematic illustration of the RhB degradation over BiVO4/MIL-53(Fe) composite under visible light irradiation

    表  1  不同催化剂样品的比表面积和孔径

    Table  1  Surface area and pore size of different catalysts

    PhotocatalystMIL-53(Fe)BiVO4BF-1BF-2BF-3
    ABET/(m2·g-1)26.510.920.518.516.4
    Pore diameter d/nm2.9312.434.365.846.53
    下载: 导出CSV

    表  2  不同材料光降解RhB的伪一级动力学参数

    Table  2  Pseudo-first-order kinetic parameters for the RhB photodegradation over various catalysts

    CatalystPseudo-first-order kinetic equationR2k/min-1t1/2=ln2·k-1/min
    BiVO4ln(C0/Ct)=0.00267t+ 0.090350.959170.00267259
    MIL-53(Fe)ln(C0/Ct)=0.00418t+ 0.098390.9690.00418165
    BF-1ln(C0/Ct)=0.01238t- 0.002950.96470.0123855
    BF-2ln(C0/Ct)=0.02167t+ 0.015740.988450.0216731
    BF-3ln(C0/Ct)=0.01518t+ 0.0760.990350.0151845
    下载: 导出CSV

    表  3  BF-2光降解不同RhB浓度的伪一级动力学参数

    Table  3  Pseudo-first-order kinetic parameters for the RhB photodegradation over BF-2 with different RhB concentrations

    RhB concentration/
    (mg·L-1)
    Pseudo-first-order
    kinetic equation
    R2k/min-1t1/2=ln2·k-1/min
    45ln(C0/Ct)=0.02015t-0.034390.995660.0201534
    50ln(C0/Ct)=0.034t-0.026190.963870.03420
    55ln(C0/Ct)=0.00493t+0.067650.995050.00493140
    60ln(C0/Ct)=0.00359t+ 0.025770.988450.00359193
    下载: 导出CSV
  • [1] GAO Y X, YU G, LIU K, DENG S B, WANG B, HUANG J, WANG Y J. Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework[J]. Chem Eng J, 2017, 330:157-165. doi: 10.1016/j.cej.2017.06.139
    [2] AL M H, ABID H R, SUNDERLAND B, WANG S B. Metal organic frameworks as a drug delivery system for flurbiprofen[J]. Drug Des Dev Ther, 2017, 11:2685-2695. doi: 10.2147/DDDT
    [3] JIN C N, ZHANG S N, ZHANG Z J, CHEN Y. Mimic carbonic anhydrase using metal-organic frameworks for CO2 capture and conversion[J]. Inorg Chem, 2018, 57(4):2169-2174. doi: 10.1021/acs.inorgchem.7b03021
    [4] YU X, WANG L, COHEN S M. Photocatalytic metal-organic frameworks for organic transformations[J]. CrystEngComm, 2017, 19(29):4126-4136. doi: 10.1039/C7CE00398F
    [5] ARAYA T, CHEN C C, JIA M K, JOHNSON D, LI R P, HUANG Y P. Selective degradation of organic dyes by a resin modified Fe-based metal-organic framework under visible light irradiation[J]. Opt Mater, 2017, 64:512-523. doi: 10.1016/j.optmat.2016.11.047
    [6] AI L H, ZHANG C H, LI L I, JIANG J. Iron terephthalate metal-organic framework:Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation[J]. Appl Catal B:Environ, 2014, 148/149:191-200. doi: 10.1016/j.apcatb.2013.10.056
    [7] HOU W, YUAN X Z, YAN W, ZENG G M, DONG H R, CHEN X H, LENG J L, WU Z B, PENG L J. In situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visi-ble-light-driven photocatalysis[J]. Appl Catal B:Environ, 2016, 186:19-29. doi: 10.1016/j.apcatb.2015.12.041
    [8] LIANG R W, JING F F, YAN G Y, WU L. Synthesis of CdS-decorated MIL-68(Fe) nanocomposites:Efficient and stable visible light photocatalysts for the selective reduction of 4-nitroaniline to p-phenylenediamine in water[J]. Appl Catal B:Environ, 2017, 218:452-459. doi: 10.1016/j.apcatb.2017.06.075
    [9] ZHAO D Q, WANG W W, ZONG W J, XIONG S M, ZHANG Q, JI F Y, XU X. Synthesis of Bi2S3/BiVO4 heterojunction with a one-step hydrothermal method based on pH control and the evaluation of visible-light photocatalytic performance[J]. Materials, 2017, 10(8):891. doi: 10.3390/ma10080891
    [10] NALBANDIAN M J, ZHANG M L, SANCHEZ J, CHOA Y H, CWIERTNY D M, MYUNG N V. Synthesis and optimization of BiVO4, and co-catalyzed BiVO4, nanofibers for visible light-activated photocatalytic degradation of aquatic micropollutants[J]. J Mol Catal A:Chem, 2015, 404/405:18-26. doi: 10.1016/j.molcata.2015.04.003
    [11] LI J H, ZHAO W, GUO Y, WEI Z B. Facile synthesis and high activity of novel BiVO4/FeVO4, hetero-junction photocatalyst for degradation of metronidazole[J]. Appl Surf Sci, 2015, 351(7):270-279.
    [12] ZHOU Z, LI Y, LV K, WU X, LI Q, LUO J. Fabrication of walnut-like BiVO4@Bi2S3 heterojunction for efficient visible photocatalytic reduction of Cr (Ⅵ)[J]. Mater Sci Semicond Process, 2018, 75:334-341. doi: 10.1016/j.mssp.2017.11.011
    [13] WANG Q Z, NIU T J, WANG L, YAN C X, HUANG J W. FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting[J]. Chem Eng J, 2018, 337:506-514. doi: 10.1016/j.cej.2017.12.126
    [14] LIANG R, JING F, SHEN L, QIN N, WU L. MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr (Ⅵ) and oxidation of dyes[J]. J Hazard Mater, 2015, 287:364-372. doi: 10.1016/j.jhazmat.2015.01.048
    [15] HUANG W Y, LIU N, ZHANG X D, WU M H, TANG L. Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr (Ⅵ) reduction under visible light[J]. Appl Surf Sci, 2017, 425:107-116. doi: 10.1016/j.apsusc.2017.07.050
    [16] TIAN N, HUANG H W, He Y, GUO Y X, ZHANG T R, ZHANG Y H. Mediator-free direct Z-scheme photocatalytic system:BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity[J]. Dalton Trans, 2015, 44(9):4297-4307. doi: 10.1039/C4DT03905J
    [17] WANG D B, JIA F Y, WANG H, CHEN F, FANG Y, DONG W B, ZENG G M, LI X M, YANG Q, YUAN X Z. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. J Colloid Interf Sci, 2018, 519:273-284. doi: 10.1016/j.jcis.2018.02.067
    [18] MENG X C, LI Z Z, ZHANG Z S. Palladium nanoparticles and rGO co-modified BiVO4 with greatly improved visible light-induced photocatalytic activity[J]. Chemosphere, 2018, 198:1-12. doi: 10.1016/j.chemosphere.2018.01.070
    [19] SUBHAJYOTI S, SANTIMOY K, DEBABRATA P, RAJENDRA S. Acceler-ated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate[J]. ACS Sustainable Chem Eng, 2017, 202:165-174.
    [20] DONG W F, YANG L Y, HUANG Y M. Glycine post-synthetic modification of MIL-53(Fe) metal-organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing[J]. Talanta, 2017, 167:359-366. doi: 10.1016/j.talanta.2017.02.039
    [21] XIA Q, HUANG B B, YUAN X Z, WANG H, WU Z B, JIANG L B, XIONG T, ZHANG J, ZENG G M, WANG H. Modified stannous sulfide nanoparticles with metal-organic framework:Toward efficient and enhanced photocatalytic reduction of chromium (Ⅵ) under visible light[J]. J Colloid Interf Sci, 2018, 530:481-492. doi: 10.1016/j.jcis.2018.05.015
    [22] ZHANG C H, AI L H, JIANG J. Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of Bhodamine B under visible light[J]. Ind Eng Chem Res, 2015, 54(1):153-163. doi: 10.1021/ie504111y
    [23] CAO J, ZHOU C C, LIN H L, XU B Y, CHEN S F. Surface modification of m -BiVO4, with wide band-gap semi-conductor BiOCl to largely improve the visible light induced photocatalytic activity[J]. Appl Surf Sci, 2013, 284(11):263-269.
    [24] VU T A, LE G H, DAO C D, DANG L Q, NGUYEN K T, NGUYEN Q K, DANG P T, TRAN H T K, DUANG Q T, NGUYEN T V, LEE G D. Arsenic removal from aqueous solutions by adsorption using novel MIL-53(Fe) as a highly efficient adsorbent[J]. Rsc Adv, 2015, 5(7):5261-5268. doi: 10.1039/C4RA12326C
    [25] APPAVU B, THIRIPURANTHAGAN S, RANGANATHAN S, ERUSAPPAN E, KANNAN K. BiVO4/N-rGO nano composites as highly efficient visible active photocatalyst for the degradation of dyes and antibiotics in eco system[J]. Ecotoxicol Environ Safe, 2018, 151:118-126. doi: 10.1016/j.ecoenv.2018.01.008
    [26] CHEN R, ZHANG J F, WANG Y, CHEN X F, ZAPIEN J A, LEE C S. Graphitic carbon nitride nanosheet@metal-organic frame work core-shell nanoparticles for photo-chemo combination therapy[J]. Nanoscale, 2015, 7(41):17299-17305. doi: 10.1039/C5NR04436G
    [27] DONG X, DING W, ZHANG X, LIANG X. Mechanism and kinetics model of degradation of synthetic dyes by UV-vis/H2O2/Ferrioxalate complexes[J]. Dyes Pigm, 2007, 74(2):470-476. doi: 10.1016/j.dyepig.2006.03.008
    [28] HU L X, DENG G H, LU W C, PANG S W, HU X. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation[J]. Appl Surf Sci, 2017, 410:401-413. doi: 10.1016/j.apsusc.2017.03.140
    [29] JIANG Q, SPEHAR A M, HÅKANSSON M, SUOMI J, ALA-KLEME T, KULMALA S. Hot electron-induced cathodic electrochemilumine scence of rhodamine B at disposable oxide-coated aluminum electrodes[J]. Electrochim Acta, 2006, 51(13):2706-2714. doi: 10.1016/j.electacta.2005.08.004
    [30] ZHANG Z, WANG W, SHANG M, YIN W. Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst[J]. Catal Commun, 2010, 11(11):982-986. doi: 10.1016/j.catcom.2010.04.013
    [31] YUAN X Z, WANG H, WU Y, ZENG G M, CHEN X H, LENG L J, WU Z B, LI H. One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti) photocatalyst with improved visible light photocatalytic activity[J]. Appl Organomet Chem, 2016, 30(5):289-296. doi: 10.1002/aoc.v30.5
    [32] JI Y, CAO J, JIANG L, ZHANG Y, YI Z. G-C3N4/BiVO4, composites with enhanced and stable visible light photocatalytic activity[J]. J Alloy Compd, 2014, 590(5):9-14.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  84
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2019-02-18
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-04-10

目录

    /

    返回文章
    返回