留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电沉积制备MnO2催化剂及其在微生物燃料电池中的应用

杨改秀 王可欣 张泽珍 甄峰 孙永明

杨改秀, 王可欣, 张泽珍, 甄峰, 孙永明. 电沉积制备MnO2催化剂及其在微生物燃料电池中的应用[J]. 燃料化学学报(中英文), 2020, 48(7): 889-896.
引用本文: 杨改秀, 王可欣, 张泽珍, 甄峰, 孙永明. 电沉积制备MnO2催化剂及其在微生物燃料电池中的应用[J]. 燃料化学学报(中英文), 2020, 48(7): 889-896.
YANG Gai-xiu, WANG Ke-xin, ZHANG Ze-zhen, ZHEN Feng, SUN Yong-ming. Preparation of MnO2 catalyst by electrochemical deposition and its application in the microbial fuel cells[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 889-896.
Citation: YANG Gai-xiu, WANG Ke-xin, ZHANG Ze-zhen, ZHEN Feng, SUN Yong-ming. Preparation of MnO2 catalyst by electrochemical deposition and its application in the microbial fuel cells[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 889-896.

电沉积制备MnO2催化剂及其在微生物燃料电池中的应用

基金项目: 

广东省自然科学基金 2017A030310280

广东省自然科学基金 2019A1515011971

国家自然科学基金青年基金 51806224

中国科学院战略性先导科技专项 XDA 21050400

详细信息
  • 中图分类号: TM911.45;O646.5

Preparation of MnO2 catalyst by electrochemical deposition and its application in the microbial fuel cells

Funds: 

the Natural Science Foundation of Guangdong Province 2017A030310280

the Natural Science Foundation of Guangdong Province 2019A1515011971

National Natural Science Foundation of China 51806224

the Strategic Priority Research Program of Chinese Academy of Sciences XDA 21050400

More Information
  • 摘要: 通过电沉积的方法获得了一种具有均匀孔隙结构的海绵状二氧化锰催化剂,结合扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)等手段表征了所制备材料的表面形貌、结构及元素构成和赋存价态,采用线性伏安扫描(LSV)法对电沉积材料的电化学性能进行分析,考察其催化氧还原反应的活性,最后以合成的材料为阴极催化剂,构建微生物燃料电池系统,考察其在微生物燃料电池中的应用效果。结果表明,以电沉积二氧化锰为阴极催化剂的微生物燃料电池最大功率密度为975.6 mW/m2,是以商业二氧化锰为阴极催化剂的电池的1.7倍;这表明作为一种经济、高效、环境友好的阴极氧还原催化剂,电沉积法制备的二氧化锰为实现阴极催化剂的低成本制备以及微生物燃料电池放大化推进提供了新的研究途径。
  • 图  1  MnO2纳米催化剂的制备流程示意图

    Figure  1  Schematic diagram for the preparation of MnO2 nanocatalyst by electrodeposition

    图  2  MFC反应器的设计原理

    Figure  2  Schematic illustration of a MFC

    图  3  MnO2纳米催化剂的XRD谱图

    Figure  3  XRD pattern of electrodeposited MnO2

    图  4  不同放大倍数的Mn O2纳米催化剂SEM照片

    Figure  4  SEM images of electrodeposited MnO2 of different magnifications

    图  5  电沉积MnO2的TEM照片(a)和Mapping照片((b)-(d))

    Figure  5  TEM images (a) and elemental mapping of electrodeposited MnO2 ((b)-(d))

    图  6  电沉积MnO2的氮气吸附-脱附曲线(a), 孔径分布(b)和XPS全谱图(c)和Mn 2p的XPS谱图(d)

    Figure  6  N2 adsorption-desorption isotherms (a), pore size distributions (b), survey scan XPS spectrum (c), and Mn 2p XPS spectra of electrodeposited MnO2

    图  7  不同阴极催化剂在50mmol/L磷酸盐缓冲液中的LSV曲线

    Figure  7  LSV curves of different cathode catalysts at electrode rotation rate of 1600r/min in O2-saturated 50mM PBS

    图  8  电沉积MnO2和商业MnO2阴极催化剂组装MFCs的输出功率密度曲线(a)和电池的极化曲线(b)

    Figure  8  Power density (a) and polarization curves (b) of MFCs with different cathode catalysts

  • [1] SLATE A J, WHITEHEAD K A, BROWNSON D A C, BANKS C E. Microbial fuel cells:An overview of current technology[J]. Renewable Sustainable. Energy Rev, 2019, 101:60-81. doi: 10.1016/j.rser.2018.09.044
    [2] CAI T, HUANG Y, HUANG M, XI Y, PANG D, ZHANG W. Enhancing oxygen reduction reaction of supercapacitor microbial fuel cells with electrospun carbon nanofibers composite cathode[J]. Chem Eng J, 2019, 371:544-553. doi: 10.1016/j.cej.2019.04.025
    [3] GUO D, TIAN Z, WANG J, KE X, ZHU Y. Co2N nanoparticles embedded N-doped mesoporous carbon as efficient electrocatalysts for oxygen reduction reaction[J]. Appl Surf Sci, 2019, 473:555-563. doi: 10.1016/j.apsusc.2018.12.204
    [4] GUO Y Y, YUAN P F, ZHANG J N, HU Y F, AMIINU I S, WANG X, ZHOU J G, XIA H C, SONG Z B, XU Q, MU S C. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-Air Batteries[J]. ACS Nano, 2018, 12(2):1894-1901. doi: 10.1021/acsnano.7b08721
    [5] 庄林.氮磷共掺杂-提升氧还原催化剂毒化分子耐受性(SOx, NOx和POx)[J].物理化学学报, 2019, 35(7):659-660.

    ZHUANG Lin. P, N-doped carbon as an efficient anti-poisoning catalyst against SOx, NOx and POx during oxygen reduction in acidic media[J]. Acta Phys-Chim Sin, 2019, 35(7):659-660
    [6] JING B, YOU S, MA Y, XING Z, CHEN H, DAI Y, ZHANG C, REN N, ZOU J. Fe3Se4/FeSe heterojunctions in cornstalk-derived N-doped carbon framework enhance charge transfer and cathodic oxygen reduction reaction to boost bio-electricity generation[J]. Appl Catal B:Environ, 2019, 244:465-474. doi: 10.1016/j.apcatb.2018.11.074
    [7] LIU D, WU C, CHEN S, DING S, XIE Y, WANG C, WANG T, HALEEM Y A, REHMAN Z U, SANG Y, LIU Q, ZHENG X, WANG Y, GE B, XU H, SONG L. In situ trapped high-density single metal atoms within graphene:Iron-containing hybrids as representatives for efficient oxygen reduction[J]. Nano Res, 2018, 11(4):2217-2228. doi: 10.1007/s12274-017-1840-8/email/correspondent/c1/new
    [8] BURKITT R, WHIFFEN T R, YU E H. Iron phthalocyanine and MnOx composite catalysts for microbial fuel cell applications[J]. Appl Catal B:Environ, 2016, 181:279-288. doi: 10.1016/j.apcatb.2015.07.010
    [9] 王俊, 魏子栋.非贵金属氧还原催化剂的研究进展[J].物理化学学报, 2017, 33(5):886-902. http://d.wanfangdata.com.cn/periodical/wlhxxb201705010

    WANG Jun, WEI Zi-Dong. Recent progress in non-precious metal catalysts for oxygen reduction reaction[J]. Acta Phys-Chim Sin, 2017, 33(5):886-902. http://d.wanfangdata.com.cn/periodical/wlhxxb201705010
    [10] LU X, ZHAI T, ZHANG X, SHEN Y, YUAN L, HU B, GONG L, CHEN J, GAO Y, ZHOU J. WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors[J]. Adv Mater, 2012, 24(7):938-944. doi: 10.1002/adma.201104113
    [11] GORLIN Y, CHUNG C-J, NORDLUND D, CLEMENS B M, JARAMILLO T F. Mn3O4 supported on glassy carbon:An active non-precious metal catalyst for the oxygen reduction reaction[J]. ACS Catal, 2012, 2(12):2687-2694. doi: 10.1021/cs3004352
    [12] CHENG F, SHEN J, PENG B, PAN Y, TAO Z, CHEN J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nat Chem, 2011, 3(1):79-84. doi: 10.1038/nchem.931
    [13] YU S, LIU R, YANG W, HAN K, WANG Z, ZHU H. Synthesis and electrocatalytic performance of MnO2-promoted Ag@Pt/MWCNT electrocatalysts for oxygen reduction reaction[J]. J Mater Chem:A, 2014, 2(15):5371-5378. doi: 10.1039/C3TA14564F
    [14] LIU X W, SUN X F, HUANG Y X, SHENG G P, ZHOU K, ZENG R J, DONG F, WANG S G, XU A W, TONG Z H, YU H Q. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater[J]. Water Res, 2010, 44(18):5298-5305. doi: 10.1016/j.watres.2010.06.065
    [15] MENG Y, SONG W, HUANG H, REN Z, CHEN S-Y, SUIB S L. Structure-property relationship of bifunctional MnO2 nanostructures:highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J]. J Am Chem Soc, 2014, 136(32):11452-11464. doi: 10.1021/ja505186m
    [16] CLAUWAERT P, VAN DER HA D, BOON N, VERBEKEN K, VERHAEGE M, RABAEY K, VERSTRAETE W. Open air biocathode enables effective electricity generation with microbial fuel cells[J]. Environ Sci Technol, 2007, 41(21):7564-7569. doi: 10.1021/es0709831
    [17] MAJIDI M R, FARAHANI F S, HOSSEINI M, AHADZADEH I. Low-cost nanowired alpha-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell[J]. Bioelectrochem, 2019, 125:38-45. doi: 10.1016/j.bioelechem.2018.09.004
    [18] KUMAR G G, AWAN Z, NAHM K S, XAVIER J S. Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells[J]. Biosens Bioelectron, 2014, 53:528-534. doi: 10.1016/j.bios.2013.10.012
    [19] 卢娜, 周奔, 邓丽芳, 周顺桂. MnO2为阴极催化剂的微生物燃料电池处理淀粉废水研究[J].应用基础与工程科学学报, 2009, 17(Supplement):65-73. http://www.cqvip.com/QK/84465X/2009S1/1003862375.html

    LU Na, ZHOU Ben, DENG Li-fang, ZHOU Shun-gui. Starch processing wastewater treatment using a continuous microbial fuel cell with MnO2 cathodic catalyst[J]. J Basic Sci Eng, 2009, 17(Supplement):65-73. http://www.cqvip.com/QK/84465X/2009S1/1003862375.html
    [20] ZHANG L, LIU C, ZHUANG L, LI W, ZHOU S, ZHANG J. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells[J]. Biosens Bioelectron, 2009, 24(9):2825-2829. doi: 10.1016/j.bios.2009.02.010
    [21] LU M, KHARKWAL S, NG H Y, LI S F Y. Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells[J]. Biosens Bioelectron, 2011, 26(12):4728-4732. doi: 10.1016/j.bios.2011.05.036
    [22] ROCHE I, CHAINET E, CHATENET M, VONDRAK J. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the Oxygen Reduction Reaction (ORR) in alkaline medium:Physical characterizations and ORR mechanism[J]. J Phys Chem C, 2007, 111(3):1434-1443. doi: 10.1021/jp0647986
    [23] GAO F, TANG X, YI H, CHU C, LI N, LI J, ZHAO S. In-situ DRIFTS for the mechanistic studies of NO oxidation over alpha-MnO2, beta-MnO2 and gamma-MnO2 catalysts[J]. Chem Eng J, 2017, 322:525-537. doi: 10.1016/j.cej.2017.04.006
    [24] PENG R, ZHENG Y, GUI L, ZHU Y, YU P, LUO Y. Template free synthesize mesoporous manganese dioxides for nater treatment[J]. J Alloys Compd, 2018, 753:130-137. doi: 10.1016/j.jallcom.2018.04.144
    [25] JU J, ZHAO H, KANG W, TIAN N, DENG N, CHENG B. Designing MnO2 & carbon composite porous nanofiber structure for supercapacitor applications[J]. Electrochim Acta, 2017, 258:116-123. doi: 10.1016/j.electacta.2017.10.094
    [26] YANG H, ZHANG C, MENG Q, CAO B, TIAN G. Pre-lithiated manganous oxide/graphene aerogel composites as anode materials for high energy density lithium ion capacitors[J]. J Power Sources, 2019, 431:114-124. doi: 10.1016/j.jpowsour.2019.05.060
    [27] ZHANG P, LI K, LIU X. Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells[J]. J Power Sources, 2014, 264:248-253. doi: 10.1016/j.jpowsour.2014.04.098
    [28] 莫光权.功能化碳纳米管材料在微生物燃料电池中的应用研究[D].广州: 华南理工大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10561-1011044091.htm

    Mo Guang-quan.Application of functinalized carbon nanotube materials in microbial fuel cell[D]. Guangzhou: South China University of Technology, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10561-1011044091.htm
    [29] LIU Y, LIU Z-M. Promoted activity of nitrogen-doped activated carbon as a highly efficient oxygen reduction catalyst in microbial fuel cells[J]. J Appl Electrochem, 2019, 49(2):119-133. doi: 10.1007/s10800-018-1263-6
    [30] YANG G, CHEN D, LV P, KONG X, SUN Y, WANG Z, YUAN Z, LIU H, YANG J. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications[J]. Sci Rep-UK, 2016, 6:35252. doi: 10.1038/srep35252
    [31] LIU Y, FAN Y S, LIU Z M. Pyrolysis of iron phthalocyanine on activated carbon as highly efficient non-noble metal oxygen reduction catalyst in microbial fuel cells[J]. Chem Eng J, 2019, 361:416-427. doi: 10.1016/j.cej.2018.12.105
    [32] 钱凡.电沉积法制备MnO2及其在超级电容器方面的应用[D].大连: 大连理工大学, 2018. https://www.ixueshu.com/document/994906362d7885de889fafaa5677695f318947a18e7f9386.html

    QIAN Fan. MnO2 Prepared by electrochemical deposition for supercapacitor applications[D]. Dalian: Dalian University of Technology, 2018. https://www.ixueshu.com/document/994906362d7885de889fafaa5677695f318947a18e7f9386.html
    [33] YAN L, SHEN C, NIU L, LIU M-C, LIN J, CHEN T, GONG Y, LI C, LIU X, XU S. Experimental and theoretical investigation of the effect of oxygen vacancies on the electronic structure and pseudocapacitance of MnO2[J]. ChemSusChem, 2019, 12:15. doi: 10.1002/cssc.201901015?af=R
    [34] STOERZINGER K A, RISCH M, HAN B, SHAO-HORN Y. Recent insights into manganese oxides in catalyzing oxygen reduction kinetics[J]. ACS Catal, 2015, 5(10):6021-6031. doi: 10.1021/acscatal.5b01444
    [35] SELVAKUMAR K, KUMAR S M S, THANGAMUTHU R, RAJPUT P, BHATTACHARYYA D, JHA S N. 2D and 3D silica-template-derived MnO2 electrocatalysts towards enhanced oxygen evolution and oxygen reduction activity[J]. ChemElectroChem, 2018, 5(24):3980-3990. doi: 10.1002/celc.201801143
    [36] 陈素怡.过渡金属掺杂的二氧化锰的合成及其氧还原催化性能研究[D].广州: 广东工业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-11845-1016010486.htm

    CHEN Su-yi. Synthesis of Transition Metals dopedManganese Dioxides and the oxygen reduction activities[D]. Guangzhou: Guangdong university of technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-11845-1016010486.htm
    [37] SHAO M, CHANG Q, DODELET J-P, CHENITZ R. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem Rev, 2016, 3594. doi: 10.1021/acs.chemrev.5b00462
  • 加载中
图(9)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  57
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-31
  • 修回日期:  2020-06-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回