留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3+辅助煤浆氧化制氢研究

向康 孙志刚 何建波 贾杰 隋升

向康, 孙志刚, 何建波, 贾杰, 隋升. Fe3+辅助煤浆氧化制氢研究[J]. 燃料化学学报(中英文), 2016, 44(5): 621-627.
引用本文: 向康, 孙志刚, 何建波, 贾杰, 隋升. Fe3+辅助煤浆氧化制氢研究[J]. 燃料化学学报(中英文), 2016, 44(5): 621-627.
XIANG Kang, SUN Zhi-gang, HE Jian-bo, JIA Jie, SUI Sheng. Hydrogen production from oxidation of coal slurries assisted by ferric ions[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 621-627.
Citation: XIANG Kang, SUN Zhi-gang, HE Jian-bo, JIA Jie, SUI Sheng. Hydrogen production from oxidation of coal slurries assisted by ferric ions[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 621-627.

Fe3+辅助煤浆氧化制氢研究

详细信息
    通讯作者:

    隋升, Tel, Fax: 021-34206249, E-mail: ssui@sjtu.edu.cn

  • 中图分类号: TQ536.1

Hydrogen production from oxidation of coal slurries assisted by ferric ions

  • 摘要: 利用Fe3+/Fe2+电对的相互转化原理, 在水热反应釜中用Fe3+氧化煤浆得到Fe2+, 将Fe2+在电解槽中电解氧化, 在阴极产生氢气, 从而通过两步反应形成一个新的煤浆电氧化制氢工艺。进行了九次水热-电解循环实验, 在恒电压(1 V) 条件下, 测试了电解反应的电流密度和累积电量的数据, 并对循环实验前期、中期、后期的三个阶段煤样品进行了扫描电镜(SEM)、比表面积(BET)、热重(TG)、红外光谱(FT-IR) 等表征分析。研究表明, 相对于通常煤浆电氧化制氢工艺, 这种"两步法"煤浆制氢新工艺具有更高的反应速率, 初始电流密度约为60 mA/cm2, 而传统的"一步法"煤浆制氢工艺初始电流密度均不超过10 mA/cm2。表征分析结果很好地反映了煤颗粒在这种制氢工艺过程中的形态、结构、成分的变化, 从而解释了在新的煤浆氧化制氢工艺中的Fe3+/Fe2+转化的反应机理。
  • 图  1  加热反应实验装置示意图

    Figure  1  Schematic of the hydrothermal reaction device

    1: hot plate; 2: asbestosed wire gauze; 3: magnetic stirrer; 4: round-bottom flask; 5: N2inlet; 6: cooling water inlet; 7: condenser pipe; 8: cooling water outlet; 9: thermometer; 10: saturated Ca (OH)2 solution; 11: gas outlet

    图  2  电解反应装置示意图

    Figure  2  Schematic of the electrolyser

    1: anode; 2: cathode; 3: gas outlet; 4: proton exchange membrane; 5: magnetic stirrer

    图  3  前五次循环实验上层清液电解电流密度变化

    Figure  3  Change of charging current density of the upper solution in the hydrothermal reaction device for the first 5 cycles

    图  4  前五次循环实验上层清液电解电量变化

    Figure  4  Change of charging electric quantity of the upper solution in the hydrothermal reaction device for the first 5 cycles

    图  5  后四次循环实验混合液电解电流密度变化

    Figure  5  Change of charging current density of the mixed solution in the hydrothermal reaction device for the latter 4 cycles

    图  6  后四次循环实验混合液电解电量变化

    Figure  6  Change of charging electric quantity of the mixed solution in the hydrothermal reaction device for the latter 4 cycles

    图  7  循环反应三个阶段煤样品的SEM照片

    Figure  7  SEM images of three samples in different cycles

    (a): fresh coal sample (0 cycle); (b): middle coal sample (the 5th cycle); (c): final coal sample (the 9th cycle)

    图  8  循环反应前后煤样品的红外光谱谱图

    Figure  8  FT-IR spectra of fresh coal sample and final coal sample

    a: fresh coal sample (0 cycle); b: final coal sample (the 9th cycle)

    图  9  循环反应三个阶段煤样品的热重分析曲线

    Figure  9  TG curves for three samples in different cycles

    a: fresh coal sample (0 cycle); b: middle coal sample (the 5th cycle); c: final coal sample (the 9th cycle)

    表  1  循环反应三个阶段煤样品的比表面积

    Table  1  BET specific surface area of three samples in different cycles

    BET A/(m2·g-1)
    fresh coal sample middle coal sample final coal sample
    0.289 10.022 5.581
    下载: 导出CSV
  • [1] SATHE N, BOTTE G G. Assessment of coal and graphite electrolysis on carbon fiber electrodes[J]. J Power Sources, 2006, 161(1): 513-523. doi: 10.1016/j.jpowsour.2006.03.075
    [2] COUGHLIN R W, FAROOQUE M. Hydrogen production from coal, water and electrons[J]. Nature (London), 1979, 279(5711): 301-303. doi: 10.1038/279301a0
    [3] COUGHLIN R W, FAROOQUE M. Thermodynamic, kinetic, and mass balance aspects of coal-depolarized water electrolysis[J]. Ind Eng Chem Proc Des Dev, 1982, 21(4): 559-564. doi: 10.1021/i200019a004
    [4] COUGHLIN R W, FAROOQUE M. Electrochemical gasification of coal-simultaneous production of hydrogen and carbon dioxide by a single reaction involving coal, water, and electrons[J]. Ind Eng Chem Proc Des Dev, 1980, 19(2): 211-219. doi: 10.1021/i260074a002
    [5] COUGHLIN R W, FAROOQUE M. Consideration of electrodes and electrolytes for electrochemical gasification of coal by anodic oxidation[J]. J Appl Electrochem, 1980, 10(6): 729-740. doi: 10.1007/BF00611276
    [6] ANTHONY K E, LINGE H G. Oxidation of coal slurries in acidified ferric sulfate[J]. J Electrochem Soc, 1983, 130(11): 2217-2219. doi: 10.1149/1.2119555
    [7] DHOOGE P M, STILWELL D E, PARK S M. Electrochemical studies of coal slurry oxidation mechanisms[J]. J Electrochem Soc, 1982, 129(8): 1719-1724. doi: 10.1149/1.2124257
    [8] DHOOGE P M, PARK S M. Electrochemistry of coal slurries Ⅱ. Studies on various experimental parameters affecting oxidation of coal slurries[J]. J Electrochem Soc, 1983, 130(5): 1029-1036. https://www.researchgate.net/publication/234907228_Electrochemistry_of_Coal_Slurries_II_Studies_on_Various_Experimental_Parameters_Affecting_Oxidation_of_Coal_Slurries
    [9] PATIL P, BOTTE G G. 206th Electrochemical Society Meeting[C]. Hawaii: The Electrochemical Society Inc, 2004: 559-565.
    [10] HESENOV A, MERYEMOGLU B, LCTEN O. Electrolysis of coal slurries to produce hydrogen gas: Effects of different factors on hydrogen yield[J]. Int J Hydrogen Energy, 2011, 36(19): 12249-12258. doi: 10.1016/j.ijhydene.2011.06.134
    [11] PATIL P, ABREU Y D, BOTTE G G. Electrooxidation of coal slurries on different electrode materials [J]. J Power Sources, 2006, 158(1): 368-377. doi: 10.1016/j.jpowsour.2005.09.033
    [12] FAROOQUE M, COUGHLIN R W. Electrochemical gasification of coal (investigation of operating conditions and variables)[J]. Fuel, 1979, 58(10): 705-712. doi: 10.1016/0016-2361(79)90066-8
    [13] DEMOZ A, KHULBE C, FAIRBRIDGE C, PETROVIC S. Iodide mediated electrolysis of acidic coke/coal suspension[J]. J Appl Electrochem, 2008, 38(6): 845-851. doi: 10.1007/s10800-008-9522-6
    [14] SEEHRA M S, RANGANATHAN S, MANIVANNAN A. Carbon-assisted water electrolysis: An energy-efficient process to produce pure hydrogen at room temperature [J]. Appl Phys Lett, 2007, (90): 044-104.
    [15] 刘欢, 王志忠.煤电解氧化的伏安特性的研究[J].燃料化学学报, 2002, 30(2): 182-185. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX200202018.htm

    LIU Huan, WANG Zhi-zhong. Study on Volt-ampere characteristics of coal oxidation[J]. J Fuel Chem Technol, 2002, 30(2): 182-185. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX200202018.htm
    [16] JIN X, BOTTE G G. Understanding the kinetics of coal electrolysis at intermediate temperatures[J]. J Power Sources, 2010, 195(15): 4935-4942. doi: 10.1016/j.jpowsour.2010.02.007
    [17] JIN X, BOTTE G G. Feasibility of hydrogen production from coal electrolysis at intermediate temperatures[J]. J Power Sources, 2007, 171(2): 826-834. doi: 10.1016/j.jpowsour.2007.06.209
    [18] 贾杰, 隋升, 朱新坚, 黄波.煤浆电解制氢的动力学研究[J].燃料化学学报, 2013, 2(2): 139-143. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18114.shtml

    JIA Jie, SUI Sheng, ZHU Xin-jian, HUANG Bo. Effect of kinetic factors on hydrogen production by coal slurry electrolysis[J]. J Fuel Chem Technol, 2013, 2(2): 139-143. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18114.shtml
    [19] THOMAS G, CHETTIAR M, BIRSS V I. Electrochemical oxidation of acidic Alberta coal slurries[J]. J Appl Electrochem, 1990, 20(6): 941-950. doi: 10.1007/BF01019569
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  48
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-23
  • 修回日期:  2016-03-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-05-10

目录

    /

    返回文章
    返回