留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MCM-41和HZSM-5协同催化对油菜秸秆热解的影响

刘莎 蔡忆昔 樊永胜 李小华 王嘉骏

刘莎, 蔡忆昔, 樊永胜, 李小华, 王嘉骏. MCM-41和HZSM-5协同催化对油菜秸秆热解的影响[J]. 燃料化学学报(中英文), 2016, 44(10): 1195-1202.
引用本文: 刘莎, 蔡忆昔, 樊永胜, 李小华, 王嘉骏. MCM-41和HZSM-5协同催化对油菜秸秆热解的影响[J]. 燃料化学学报(中英文), 2016, 44(10): 1195-1202.
LIU Sha, CAI Yi-xi, FAN Yong-sheng, LI Xiao-hua, WANG Jia-jun. Synergistic catalysis of MCM-41 and HZSM-5 on rape straw pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1195-1202.
Citation: LIU Sha, CAI Yi-xi, FAN Yong-sheng, LI Xiao-hua, WANG Jia-jun. Synergistic catalysis of MCM-41 and HZSM-5 on rape straw pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1195-1202.

MCM-41和HZSM-5协同催化对油菜秸秆热解的影响

基金项目: 

国家自然科学基金 51276085

江苏省普通高校研究生科研创新计划 KYLX_1039

江苏省高校优势学科建设项目 PDPA

详细信息
  • 中图分类号: TQ35

Synergistic catalysis of MCM-41 and HZSM-5 on rape straw pyrolysis

More Information
  • 摘要: 以油菜秸秆为原料,采用两种方案分层布置催化剂(HZSM-5/MCM-41和MCM-41/HZSM-5),并与MCM-41和HZSM-5单独催化进行对比,从生物油品质和催化剂耐久性两个角度探究协同催化作用机理;对精制生物油有机相进行理化特性分析,采用FT-IR和GC-MS进行成分分析,对催化剂进行耐久性分析。结果表明,与单独催化相比,协同催化所得精制生物油液相产率略有降低,气相产率升高,精制生物油有机相理化特性进一步提高,其中,MCM-41/HZSM-5协同催化所得精制生物油有机相热值较高,为34.31 MJ/kg;精制生物油有机相中含有多种芳香族类物质和少量的羰基类物质,协同催化较单独催化能产生较多的烃类物质及较少的含氧芳香族类物质,其中,MCM-41/HZSM-5协同催化所得精制生物油有机相中烃类物质含量较高,且以单环芳香烃为主;HZSM-5分子筛在300-800℃有两个失重峰,MCM-41分子筛在300-800℃仅有一个失重峰,表明MCM-41催化剂上沉积的焦炭成分单一,较易去除,且协同催化后分子筛表面沉积的焦炭总含量较少。
  • 图  1  生物质真空热解及在线催化提质系统示意图

    Figure  1  Schematic diagram of vacuum pyrolysis and catalytic upgrading system

    图  2  催化热解产物分布随布置方案的变化

    Figure  2  Product distribution with different layout schemes

    图  3  不同布置方案生物油有机相红外光谱谱图

    Figure  3  Infrared spectroscopy of refined bio-oil with different layout schemes

    图  4  不同布置方案对精制生物油有机相中产物组分的影响

    Figure  4  Composition distribution in the refined bio-oil with different loading ways

    : hydrocarbons; : alcohols; : acids; : aldehydes; : ketones; : aromatics; : others

    图  5  HZSM-5和MCM-41催化剂各样本热重特性曲线

    Figure  5  TG and DTG curves of HZSM-5 and MCM-41 spent catalysts

    (a) : HZSM-5; (b) : MCM-41

    表  1  油菜秸秆的元素分析和工业分析

    Table  1  Ultimate and proximate analyses of rape straw

    SampleUltimate analysis w/%Proximate analysis wad/%QHHV/(MJ·kg-1)
    CHOaNSMVAFC
    Rape straw42.225.5351.770.410.076.1272.843.6917.3515.92
    a: by difference
    下载: 导出CSV

    表  2  MCM-41和HZSM-5孔结构特征参数

    Table  2  Pore structure characteristic parameters of MCM-41 and HZSM-5

    CatalystSpecific surface area A/(m2·g-1)Pore volume v/(cm3·g-1)
    MCM-417910.65
    HZSM-53420.20
    下载: 导出CSV

    表  3  不同布置方案精制生物油有机相的理化特性

    Table  3  Physical properties of refined bio-oil with different layout schemes

    Physical propertyY0d, b[14]Y1Y2Y3Y4Diesel fuel
    Density ρ/(g·cm-3)1.180.980.960.950.970.84
    pH value2.105.125.955.846.01ndb
    Kinematic viscosity v/(mm2·s-1)8.855.876.015.865.143-8(20 ℃)
    QHHV /(MJ·kg-1)28.4433.0833.0233.5634.3145.50
    C w /%59.9574.6775.4176.7078.8086.58
    H w /%9.148.017.717.938.1013.29
    Oa w /%30.9117.3216.8815.3713.100.01
    a: by difference; b: not determined; d, b: dry base
    下载: 导出CSV

    表  4  不同布置方案精制生物油有机相主要产物

    Table  4  Main components of refined bio-oil with different loading ways

    CompoundContent w/%
    MCM-41HZSM-5HZSM-5/MCM-41MCM-41/HZSM-5
    Toluene1.673.75
    Ethylbenzene6.6418.63
    Benzene, 1-ethyl-2-methyl-0.471.266.368.44
    Indene1.720.58
    Benzene, 1, 2, 4, 5-tetramethyl-4.631.23
    1H-indene, 2, 3-dihydro-4-methyl-1.041.051.34
    1H-indene, 1-methyl-1.71.06
    Naphthalene0.891.220.87
    Naphthalene, 2-methyl-1.160.731.562.35
    Naphthalene, 1, 4-dimethyl-1.160.921.75
    Phenol4.11.793.073.1
    Phenol, 2-methyl-7.281.155.465.71
    Phenol, 2-methoxy-4.276.584.915
    Phenol, 2, 4-dimethyl-5.654.483.281.79
    Phenol, 2-methoxy-4-methyl-2.424.052.142.56
    1, 2-benzenediol, 3-methoxy-0.933.151.05
    Phenol, 4-ethyl-2-methoxy-1.873.641.861.84
    下载: 导出CSV

    表  5  不同失活催化剂的积炭含量

    Table  5  Coke contents of the deactivated catalysts

    SampleM1H2H3M3M4H4
    Weight loss w/%20.5722.8516.0411.6213.435.54
    下载: 导出CSV
  • [1] 徐莹, 王铁军, 马隆龙, 张琦, 陈冠益.真空热解松木粉制备生物油[J].农业工程学报, 2013, 29(1):196-201. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201301028.htm

    XU Ying, WANG Tie-jun, MA Long-long, ZHANG Qi, CHEN Guan-yi.Technology of bio-oil preparation by vacuum pyrolysis of pine straw[J].Trans Chin Soc Agric Eng, 2013, 29(1):196-201. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201301028.htm
    [2] 吴创之, 周肇秋, 阴秀丽, 易维明.我国生物质能源发展现状与思考[J].农业机械学报, 2009, 40(1):91-99. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200901021.htm

    WU Chuang-zhi, ZHOU Zhao-qiu, YIN Xiu-li, YI Wei-ming.Current status of biomass energy development in China[J].Trans Chin Soc Agric Mach, 2009, 40(1):91-99. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200901021.htm
    [3] BRIDGWATER A V.Review of fast pyrolysis of biomass and product upgrading[J].Biomass Bioenergy, 2012, 38:68-94. doi: 10.1016/j.biombioe.2011.01.048
    [4] 谭顺, 张志军, 孙剑平, 王清文.HZSM-5生物质催化裂解的近期研究进展[J].催化学报, 2013, 34(4):641-650. doi: 10.1016/S1872-2067(12)60531-2

    TAN Shun, ZHANG Zhi-jun, SUN Jian-ping, WANG Qing-wen.Recent progress of catalytic pyrolysis of biomass by HZSM-5[J].Chin J Catal, 2013, 34(4):641-650. doi: 10.1016/S1872-2067(12)60531-2
    [5] COURTNEY A F, TONYA M, YAYING J, MARK C, CZARENA C, SAM A.Bio-oil upgrading over platinum catalysts using in situ generated hydrogen[J].Appl Catal A:Gen, 2009, 358(2):150-156. doi: 10.1016/j.apcata.2009.02.006
    [6] 张琦, 常杰, 王铁军, 徐莹.生物质裂解油的性质及精制研究进展[J].石油化工, 2006, 35(5):493-498. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG200605020.htm

    ZHANG Qi, CHANG Jie, WANG Tie-jun, XU Ying.Progress on research of properties and upgrading of bio-oil[J].Petrochem Technol, 2006, 35(5):493-498. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG200605020.htm
    [7] 刘荣厚, 黄彩霞, 蔡均猛, 邓春健.生物质热裂解生物油精制的研究进展[J].农业工程学报, 2008, 24(3):308-308. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200803067.htm

    LIU Rong-hou, HUANG Cai-xia, CAI Jun-meng, DENG Chun-jian.Research progress in the upgrading of bio-oil from biomass pyrolysis[J].Trans Chin Soc Agric Eng, 2008, 24(3):308-308. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200803067.htm
    [8] 骆仲泱, 张晓东, 周劲松, 倪明江, 岑可法.生物质热解焦油的热裂解与催化裂解[J].高校化学工程学报, 2004, 18(2):162-167. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX200402005.htm

    LUO Zhong-yang, ZHANG Xiao-dong, ZHOU Jin-song, NI Ming-jiang, CEN Ke-fa.Experimental study on catalytic and thermal cracking of tar from biomass pyrolysis[J].J Chem Eng Chin Univ, 2004, 18(2):162-167. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX200402005.htm
    [9] LI G J, ZHAO R Y, BAI L P.Effects of catalysts on pyrolysis of chlorella[J].Microporous Mesoporous Mater, 2012, 433-440:161-165.
    [10] ADAM J, ANTONAKOU E, LAPPAS A, STOCKER M, MERETE H N, BOUZGA A.In suit catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials[J].Microporpus Mesoporous Mater, 2006, 96(1/3):93-101.
    [11] LI H Y, YAN Y J, REN Z W.Online upgrading of organic vapors from the fast pyrolysis of biomass[J].J Fuel Chem Technol, 2008, 36(6):666-671. doi: 10.1016/S1872-5813(09)60002-5
    [12] WILLIAMS P T, NITTAYA N.Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks[J].Energy, 2000, 25(6):493-513. doi: 10.1016/S0360-5442(00)00009-8
    [13] DIAO Z H, LI W, ZHANG X W, LIU G Z.Catalytic cracking of supercritical n-dodecane over meso-HZSM-5@Al-MCM-41 zeolites[J].Chem Eng Sci, 2015, 135:452-460. doi: 10.1016/j.ces.2014.12.048
    [14] KÖLDSTRÖM M, KUMAR N, HEIKKILA T, TⅡTTA M, SALMI T, YU D.Transformation of levoglucosan over H-MCM-22 zeolite and H-MCM-41 mesoporous molecular sieve catalysts[J].Biomass Bioenergy, 2011, 35(5):1967-1976. doi: 10.1016/j.biombioe.2011.01.046
    [15] 樊永胜, 蔡忆昔, 李小华, 赵卫东, 俞宁.真空热解工艺参数对生物油产率的影响研究[J].林产化学与工业, 2014, 34(1):79-85. http://www.cnki.com.cn/Article/CJFDTOTAL-LCHX201401017.htm

    FAN Yong-sheng, CAI Yi-xi, LI Xiao-hua, ZHAO Wei-dong, YU Ning.Influence of process parameters on bio-oil yield by vacuum pyrolysis[J].Chem Ind Forest Prod, 2014, 34(1):79-85. http://www.cnki.com.cn/Article/CJFDTOTAL-LCHX201401017.htm
    [16] 樊永胜, 蔡忆昔, 李小华, 俞宁, 尹海云.油菜秸秆真空热解蒸气在线催化提质研究[J].农业机械学报, 2014, 45(12):234-240. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201412035.htm

    FAN Yong-sheng, CAI Yi-xi, LI Xiao-hua, YU Ning, YIN Hai-yun.Catalytic upgrading of pyrolytic vapors from rape straw vacuum pyrolysis[J].Trans Chin Soc Agric Mach, 2014, 45(12):234-240. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201412035.htm
    [17] FAN Y S, CAI Y X, LI X H, YIN H Y, YU N, ZHANG R X, ZHAO W D.Rape straw as a source of bio-oil via vacuum pyrolysis:Optimization of bio-oil yield using orthogonal design method and characterization of bio-oil[J].J Anal Appl Pyrolysis, 2014, 106:63-70. doi: 10.1016/j.jaap.2013.12.011
    [18] CORMA A, GRANDE M S, GONZALEZ V A, ORCHILLES A V.Cracking activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY zeolite[J].J Catal, 1996, 159(2):375-382. doi: 10.1006/jcat.1996.0100
    [19] AHO A, KUMAR N, LASHKUL A V, ERANEN K, ZIOLEK M, DECYK M.Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor[J].Fuel, 2010, 89(8):1992-2000. doi: 10.1016/j.fuel.2010.02.009
    [20] 李婷婷, 张晖, 吴彩娥, 范龚建.油茶籽糖蛋白提取工艺优化及抗氧化性[J].农业机械学报, 2012, 43(4):148-155. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201204029.htm

    LI Ting-ting, ZHANG Hui, WU Cai-e, FAN Gong-jian.Extraction optimization and antioxidant activity of glycoprotein from camellia oleifera seed[J].Trans Chin Soc Agric Mach, 2012, 43(4):148-155. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201204029.htm
    [21] POUYA S R, HODA S, WAN M A W D.Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis:A review[J].Appl Catal A:Gen, 2014, 469:490-511. doi: 10.1016/j.apcata.2013.09.036
    [22] ILIOPOULOU E F, ANTONAKOU E V, KARAKOULIA S A, VASALOS I A, LAPPAS A A, TRIANTAFYLLIDIS K S.Catalytic conversion of biomass pyrolysis products by mesoporous materials:Effects of steam stability and acidity of Al-MCM-41 catalysts[J].Chem Eng J, 2007, 134(1/3):51-57.
    [23] 尹海云, 李小华, 张蓉仙, 樊永胜, 俞宁, 蔡忆昔.HSZM-5在线提质生物油及催化剂失活机理分析[J].燃料化学学报, 2014, 42(9):1077-1086. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18487.shtml

    YIN Hai-yun, LI Xiao-hua, ZHANG Rong-xian, FAN Yong-sheng, YU Ning, CAI Yi-xi.Online catalytic cracking of bio-oil over HZSM-5 zeolite and analysis of catalyst deactivation[J].J Fuel Chem Technol, 2014, 42(9):1077-1086. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18487.shtml
    [24] 郭春垒, 方向晨, 贾立明, 刘全杰.分子筛重整催化剂Pt/HZSM-5积碳失活研究[J].石油炼制与化工, 2012, 43(4):25-29.

    GUO Chun-lei, FANG Xiang-chen, JIA Li-ming, LIU Quan-jie.Study on the deactivation of Pt/HZSM-5 zeolitic reforming catalyst by coke deposition[J].Petrol Proc Petrochem, 2012, 43(4):25-29.
    [25] 李望良, 柳云骐, 刘春英, 刘晨光.MCM-41负载Mo-Ni-P催化剂的加氢性能[J].石油学报, 2004, 20(2):69-74. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG200402011.htm

    LI Wang-liang, LIU Yun-qi, LIU Chun-ying, LIU Chen-guang.Hydrogenation properties of Mo-Ni-P catalyst on MCM-41 supported[J].Acta Pet Sin (Pet Process Sect), 2004, 20(2):69-74. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG200402011.htm
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  27
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-12
  • 修回日期:  2016-06-20
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-10-10

目录

    /

    返回文章
    返回