留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爱沙尼亚油页岩及其热解产物的电子顺磁共振研究

石剑 李术元 马跃

石剑, 李术元, 马跃. 爱沙尼亚油页岩及其热解产物的电子顺磁共振研究[J]. 燃料化学学报(中英文), 2018, 46(1): 1-7.
引用本文: 石剑, 李术元, 马跃. 爱沙尼亚油页岩及其热解产物的电子顺磁共振研究[J]. 燃料化学学报(中英文), 2018, 46(1): 1-7.
SHI Jian, LI Shu-yuan, MA Yue. Electron paramagnetic resonance (EPR) properties of Estonia oil shale and its pyrolysates[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 1-7.
Citation: SHI Jian, LI Shu-yuan, MA Yue. Electron paramagnetic resonance (EPR) properties of Estonia oil shale and its pyrolysates[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 1-7.

爱沙尼亚油页岩及其热解产物的电子顺磁共振研究

基金项目: 

国家重点基础研究发展规划 973 Program, 2014CB744302

"泰山学者"建设工程专项 ts20120518

中国石油大学(北京)科研启动基金 2462015YJRC002

详细信息
  • 中图分类号: P618.12

Electron paramagnetic resonance (EPR) properties of Estonia oil shale and its pyrolysates

Funds: 

The project was supported by the National Basic Research Program of China 973 Program, 2014CB744302

"Taishan Scholar" Special Construction Project ts20120518

the Scientific Research Foundation of China University of Petroleum 2462015YJRC002

More Information
  • 摘要: 采用电子顺磁共振(EPR)技术,系统地研究了热解温度对样品自由基浓度、g因子和线宽的影响。结果表明,油页岩干酪根及其制备的热解产物沥青、焦油和半焦的自由基浓度为2.29×1014-9.16×1014。当热解温度低于380℃时,主要发生干酪根的热解聚,当热解温度超过380℃,主要为中间产物热沥青的分解阶段,表现为热沥青的自由基浓度Ngg因子值高于半焦。对EPR谱图线宽分析可知,当温度高于380℃时,焦油的线宽明显大于半焦和热沥青,说明液体内部自由基中自旋粒子间以及自旋粒子与环境的相互作用要比固体剧烈的多。温度低于380℃时,半焦和热沥青由于热解反应的进行,自由基自旋粒子之间及其与环境的相互作用增强,线宽随着温度的升高而增加。温度高于380℃时,半焦和热沥青的EPR曲线线宽降低,表明随着温度的升高自由基自旋粒子的相互作用减弱。
  • 图  1  爱沙尼亚油页岩热解产物收率

    Figure  1  Pyrolysates yields of Estonia oil shale pyrolysis process

    ■: shale oil; ▲: semicoke; ▼: thermal bitumen

    图  2  标准样品的EPR测试曲线

    Figure  2  EPR test curve of standard sample

    a: 2 μL; b: 5 μL; c: 8 μL; d: 11 μL

    图  3  DPPH标准曲线

    Figure  3  Standard curve of DPPH

    图  4  干酪根及不同温度下半焦的EPR曲线

    Figure  4  EPR curves of kerogen and semicoke at different temperatures

    a: kerogen; b: 320 ℃; c: 360 ℃; d: 400 ℃; e: 440 ℃; f: 480 ℃

    图  5  不同温度下热沥青的EPR曲线

    Figure  5  EPR curves of thermal bitumen at different temperatures

    a: 320 ℃; b: 360 ℃; c: 380 ℃; d: 400 ℃; e: 420 ℃

    图  6  不同温度下焦油的EPR曲线

    Figure  6  EPR curves of shale oil at different temperatures

    a: 360 ℃; b: 380 ℃; c: 400 ℃; d: 420 ℃; e: 460 ℃

    图  7  自由基浓度随温度的变化

    Figure  7  Effect of temperature on the free radical concentration

    □: seimicoke; ○: shale oil; ▲: thermal bitumen; ◆: kerogen

    图  8  g值随温度的变化

    Figure  8  Effect of temperature on the g factors

    □: seimicoke; ○: shale oil; ▲: thermal bitumen; ◆: kerogen

    图  9  不同产物线宽随温度的变化

    Figure  9  Effect of temperature on the linewidths

    □: seimicoke; ○: shale oil; ▲: thermal bitumen; ◆: kerogen

    表  1  爱沙尼亚油页岩的工业分析、元素分析及铝甑分析

    Table  1  Proximate, ultimate and Fischer assay analyses of Estonian oil shale

    Proximate analysis wd/% Ultimate analysis wd/% Fischer assay w/%
    M V A FC C H O N S oil water semi-coke gas
    1.76 53.83 38.82 5.59 42.13 4.72 17.72 2.17 0.32 26.42 4.77 60.24 8.57
    d: dry basis; M: moisture; V: volatile matter; A: ash; FC: fixed carbon
    下载: 导出CSV
  • [1] 钱家麟, 尹亮.油页岩:石油的补充能源[M].北京:中国石化出版社, 2011.

    QIAN Jia-lin, YIN Liang, Oil Shale:Petroleum Alternative[M]. Beijing:China Petrochemical Press, 2011
    [2] GAI H, XIAO X, CHENG P, TIAN H, FU J. Gas generation of shale organic matter with different contents of residual oil based on a pyrolysis experiment[J]. Org Geochem, 2014, 78(57):69-78. https://www.sciencedirect.com/science/article/pii/S0146638014002733
    [3] 侯丹丹, 李丹东, 石薇薇.龙口页岩油的综合评价[J].石油化工高等学校学报, 2011, 24(2):43-46. http://d.old.wanfangdata.com.cn/Periodical/syhggdxx201102011

    HOU Dan-dan, LI Dan-dong, SHI Wei-wei. Comprehensive evaluation of Longkou shale oil[J]. J Petrochem Univ, 2011, 24(2):43-46. http://d.old.wanfangdata.com.cn/Periodical/syhggdxx201102011
    [4] 杨庆春, 周怀荣, 杨思宇, 钱宇.油页岩开发利用技术及系统集成的研究进展[J].化工学报, 2016, 67(1):109-118. http://www.cqvip.com/QK/90316X/201601/667656149.html

    YANG Qing-chun, ZHOU Huai-rong, YANG Si-yu, QIAN Yu. Research progress on utilization and systemic integration technologies of oil shale[J]. J Chem Ind Eng, 2016, 67(1):109-118. http://www.cqvip.com/QK/90316X/201601/667656149.html
    [5] WEN C S, KOBYLINSKI T P. Low-temperature oil shale conversion[J]. Fuel, 1983, 62(11):1269-1273. doi: 10.1016/S0016-2361(83)80008-8
    [6] MCKEE R H, LYDER E E. The thermal decomposition of shales. I-Heat effects[J]. Ind Eng Chem (United States), 2002, 13(7):613-618. doi: 10.1021/ie50140a007
    [7] LI Q, HAN X, LIU Q, JIANG X M. Thermal decomposition of Huadian oil shale. Part 1. Critical organic intermediates[J]. Fuel, 2014, 121(2):109-116. https://www.sciencedirect.com/science/article/pii/S0016236113011903
    [8] ABOURRICHE A K, OUMAM M, HANNACHE H, BIROT M, ABOULIATIM Y, BENHAMMOU A, EL HAFIANE Y, ABOURRICHE A M, PAILLER R, NASLAIN R. Comparative studies on the yield and quality of oils extracted from mroccan oil shale[J]. J Supercrit Fluid, 2013, 84(12):98-104. http://www.oalib.com/paper/3148272
    [9] 谢芳芳, 王泽, 宋文立, 林伟刚.吉林桦甸油页岩及热解产物的红外光谱分析[J].光谱学与光谱分析, 2011, 31(1):91-94. http://www.cqvip.com/QK/90993X/201101/36246061.html

    XIE Fang-fang, WANG Ze, SONG Wen-li, LIN Wei-gang. FT-IR aalysis of oil shales from Huadian Jilin and their pyrolysates[J]. Spectrosc Spect Anal, 2011, 31(1):91-94. http://www.cqvip.com/QK/90993X/201101/36246061.html
    [10] OJA V. Examination of molecular weight distributions of primary pyrolysis oils from three different oil shales via direct pyrolysis field Ionization spectrometry[J]. Fuel, 2015, 159(1):759-765. https://www.sciencedirect.com/science/article/pii/S0016236115007322
    [11] RU X, CHENG Z, SONG L, WANG H, LI J. Experimental and computational studies on the average molecular structure of Chinese Huadian oil shale kerogen[J]. J Mol Struct, 2012, 1030(51):10-18. https://www.sciencedirect.com/science/article/pii/S0022286012006795
    [12] 李术元, 钱家麟, 秦匡宗, 朱亚杰.沥青作为中间产物的油页岩热解动力学的研究[J].燃料化学学报, 1987, 15(2):24-29. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rlhx198702002&dbname=CJFD&dbcode=CJFQ

    LI Shu-yuan, QIAN Jia-lin, QIN Kuang-zong, ZHU Ya-jie. Study on the oil shale pyrolysis kinetics with thermal bitumen as the pyrolysis intermediate[J]. J Fuel Chem Technol, 1987, 15(2):24-29. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rlhx198702002&dbname=CJFD&dbcode=CJFQ
    [13] HAN H, ZHONG N N, HUANG C X, ZHANG W. Pyrolysis kinetics of oil shale from northeast China:Implications from thermogravimetric and rock-eval experiments[J]. Fuel, 2015, 159(1):776-783. https://www.sciencedirect.com/science/article/pii/S0016236115007437
    [14] MOINE E C, GROUNE K, HAMIDI A E, MARIAM K, MOHAMMED H, SAID A. Multistep process kinetics of the non-isothermal pyrolysis of Moroccan Rif oil shale[J]. Energy, 2016, 115(1):931-941. https://www.sciencedirect.com/science/article/pii/S0360544216312749
    [15] 耿层层, 李术元, 何继来.龙口页岩油中含氧化合物的分析与鉴定[J].燃料化学学报, 2012, 40(5):538-544. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17940.shtml

    GENG Ceng-ceng, LI Shu-yuan, HE Ji-lai. Determination and indentification of oxygen-containing compounds in Longkou shale oil[J]. J Fuel Chem Technol, 2012, 40(5):538-544. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17940.shtml
    [16] KELEMEN S R, AFEWORKI M, ML G. XPS and 15N NMR study of nitrogen forms in carbonaceous solids[J]. Energy Fuels, 2002, 16(6):1507-1515. doi: 10.1021/ef0200828
    [17] FRIEBEL J, KÖPSEL R F W. The fate of nitrogen during pyrolysis of german low rank coals-parameter study[J]. Fuel, 1999, 78(8):923-932. doi: 10.1016/S0016-2361(99)00008-3
    [18] FREUDENBERG K. Biosynthesis and constitution of lignin[J]. Nature, 1959, 183(183):1152-1155.
    [19] PILAWA B, PUSZ S, KRZESIŃSKA M, KOSZOREK A, KWIECIŃSKA B. Application of electron paramagnetic resonance spectroscopy to examination ofcarbonized coal blends[J]. Int J Coal Geol, 2009, 77(3/4):372-376. https://www.sciencedirect.com/science/article/pii/S016651620800147X
    [20] QIU N S, LI H L, JIN Z J, ZHU Y. Temperature and time effect on the concentrations of free radicalsin coal:Evidence from laboratory pyrolysis experiments[J]. Int J Coal Geol, 2007, 69(3):220-228. doi: 10.1016/j.coal.2006.04.002
    [21] CHENG H N, WARTELLE L H, KLASSON K T, EDWARDSJ C. Solid-state NMR and ESR studies of activated carbons produced from pecan shells[J]. Carbon, 2010, 48(9):2455-2469. doi: 10.1016/j.carbon.2010.03.016
    [22] WANG W, MA Y, LI S Y, SHI J, TENG J S. Effect of temperature on the EPR properties of oil shale pyrolysates[J]. Energy Fuels, 2016, 30(2):830-834.
    [23] 柏静儒, 王擎, 魏艳珍, 关晓辉.桦甸油页岩的酸洗脱灰[J].中国石油大学学报(自然科学版), 2010, 32(2):150-158. http://www.cqvip.com/QK/91985A/201002/33655137.html

    BAI Jing-ru, WANG Qing, WEI Yan-zhen, GUAN Xiao-hui. Acid treatment de-ashing of Huadian oil shale[J]. J CN Univ Pet (Ed Nat Sci), 2010, 32(2):150-158. http://www.cqvip.com/QK/91985A/201002/33655137.html
    [24] TREWHELLA M J, POPLETT J F, GRINT A. Structure of green river oil shale kerogen:Determination using solid state 13C NMR specrtoscopy[J]. Fuel, 1986, 65(4):541-546. doi: 10.1016/0016-2361(86)90046-3
    [25] 郑榕萍, 潘铁英, 史新梅, 周丽芳, 刘瑞民, 张德祥, 高晋生.标准曲线法测定煤中自由基含量[J].波谱学杂志, 2011, 28(2):259-264. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_bpxzz201102010

    ZHENG Rong-ping, PAN Tie-ying, SHI Xin-mei, ZHOU Li-fang, LIU Rui-min, ZHANG De-xiang, GAO Jin-sheng. Standard curve method for measuring the content of free radicals in coal[J]. Chin J Magn Reson, 2011, 28(2):259-264. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_bpxzz201102010
    [26] TONG J H, JIANG X M, HAN X X, WANG X. Evaluation of the macromolecular structure of Huadian oil shale kerogen using molecular modeling[J]. Fuel, 2016, 181(1):330-339. https://www.sciencedirect.com/science/article/pii/S0016236116303106
    [27] 位爱竹. 煤炭自燃自由基反应机理的实验研究[D]. 徐州: 中国矿业大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10290-2008196372.htm

    WEI Ai-zhu. Experimental study on free radical reaction mechanism of coal spontaneous combustion[J]. Xuzhou:China University of Mining and Technology. 2008. http://cdmd.cnki.com.cn/Article/CDMD-10290-2008196372.htm
    [28] PETRAKIS L, GRANDY D W. Electron spin resonance spectrometric study of free radicals in coals[J]. Anal Chem, 1978, 50(2):303-308. doi: 10.1021/ac50024a034
    [29] 吴爱坪, 潘铁英, 史新梅, 周丽芳, 刘瑞民, 张德祥, 高晋生.中低阶煤热解过程中自由基的研究[J].煤炭转化, 2012, 35(2):1-5. http://www.doc88.com/p-2485981095471.html

    WU Ai-ping, PAN Tie-ying, SHI Xin-mei, ZHOU Li-fang, LIU Rui-min, ZHANG De-xiang, GAO Jin-sheng. Study of free radicals in the pyrolysis process of low rank coal[J]. Coal Convers, 2012, 35(2):1-5. http://www.doc88.com/p-2485981095471.html
    [30] LIU J X, JIANG X M, HAN X X, SHEN J, ZHANG H. Chemical properties of superfine pulverized coals. Part 2. Demineralization effects on free radical characteristics[J]. Fuel, 2014, 115(12):685-696. https://www.sciencedirect.com/science/article/pii/S0016236113006984
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  39
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-09
  • 修回日期:  2017-10-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-01-10

目录

    /

    返回文章
    返回