留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

格尔木渣油加氢反应及生焦行为的研究

边钰清 赵元生 张龙力 赵愉生 杨朝合

边钰清, 赵元生, 张龙力, 赵愉生, 杨朝合. 格尔木渣油加氢反应及生焦行为的研究[J]. 燃料化学学报(中英文), 2019, 47(8): 1016-1024.
引用本文: 边钰清, 赵元生, 张龙力, 赵愉生, 杨朝合. 格尔木渣油加氢反应及生焦行为的研究[J]. 燃料化学学报(中英文), 2019, 47(8): 1016-1024.
BIAN Yu-qing, ZHAO Yuan-sheng, ZHANG Long-li, ZHAO Yu-sheng, YANG Chao-he. Study on the hydrogenation reaction and coking behavior in Golmud residue hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 1016-1024.
Citation: BIAN Yu-qing, ZHAO Yuan-sheng, ZHANG Long-li, ZHAO Yu-sheng, YANG Chao-he. Study on the hydrogenation reaction and coking behavior in Golmud residue hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 1016-1024.

格尔木渣油加氢反应及生焦行为的研究

基金项目: 

国家自然科学基金 21576292

详细信息
  • 中图分类号: TE622.5

Study on the hydrogenation reaction and coking behavior in Golmud residue hydrogenation

Funds: 

the National Natural Science Foundation of China 21576292

More Information
  • 摘要: 选用超低沥青质含量的格尔木渣油(沥青质质量分数:0.32%)作为加氢原料,考察反应条件对加氢反应样品组分性质、胶体稳定性参数(CSP)、生焦性能的影响。结果表明,随着加氢反应温度的升高和反应时间的延长,沥青质和饱和分的含量增加,胶质和芳香分的含量减少;胶体稳定性参数降低,生焦率不断增加;胶质与沥青质的缩合度增加,芳碳率fA不断增大;金属与杂原子在加氢过程中不断得到脱除,V比Ni更容易脱除、S比N更容易脱除;催化剂表面形成了类似石墨有序结构的炭基物质,使得催化剂的孔结构参数不断减小。在所研究的反应中,当反应温度和时间分别为420℃和5 h时,催化剂的孔结构损害最为严重,出现了较大的微孔分布。
  • 图  1  不同温度加氢反应后组分组成的变化

    Figure  1  Variation of the fraction composition after the reaction at different temperatures

    图  2  不同时间加氢反应后组分组成变化

    Figure  2  Variation of the fraction composition after the reaction at different times

    图  3  胶体稳定性参数与生焦率关系

    Figure  3  Relationship of colloidal stability parameters and coke yield

    图  4  金属Ni、V脱除率随反应温度的变化

    Figure  4  Removal rate of Ni, V versus reaction temperature

    图  5  金属Ni、V脱除率随反应时间的变化

    Figure  5  Removal rate of Ni, V versus reaction time

    图  6  S、N脱除率随反应温度的变化

    Figure  6  Removal rate of S, N versus reaction temperature

    图  7  S、N脱除率随反应时间的变化

    Figure  7  Removal rate of S, N versus reaction time

    图  8  不同反应温度催化剂的XRD谱图

    Figure  8  XRD patterns of the coked catalysts at different reaction temperatures

    图  9  新鲜催化剂和不同反应时间催化剂的XRD谱图

    Figure  9  XRD patterns of coked catalysts at different reaction times

    图  10  温度对催化剂结构参数影响

    Figure  10  Effect of reaction temperature on the catalyst structure parameters

    图  11  时间对催化剂结构参数影响

    Figure  11  Effect of reaction time on the catalyst structure parameters

    图  12  不同反应温度下催化剂的孔径分布

    Figure  12  Pore size distribution of catalysts at different reaction temperatures

    图  13  不同反应时间下催化剂的孔径分布

    Figure  13  Pore size distribution of catalysts at different reaction times

    表  1  GM渣油的基本物性

    Table  1  Basic properties of GM residue

    Analysis item Value Analysis item Value
    Density(20 ℃) ρ/(g·cm-3) 0.91 SARA
    Kinematic viscosity(50 ℃)η/(Pa·s) 0.46 Saturate w/% 43.43
    Carbon residue w/% 6.67 Aromatic w/% 28.00
    CSP* /(g·g-1) 14.2 Resin w/% 28.25
    Molecular weight /(g·mol-1) 1302 C7-asphaltene w/% 0.32
    *: mass fraction conductivity method
    下载: 导出CSV

    表  2  实验试剂一览表

    Table  2  List of experimental reagents

    Reagent Specification Manufacturer
    N-heptane Analytic reagent Sinopharm chemical reagent Co. Ltd
    Methylbenzene Analytic reagent Sinopharm chemical reagent Co. Ltd
    Neutral alumina Chromatography Shanghai 54 chemical reagent factory
    Absolute ethyl alcohol Analytic reagent Sinopharm chemical reagent Co. Ltd
    Light petroleum Analytic reagent Sinopharm chemical reagent Co. Ltd
    下载: 导出CSV

    表  3  实验仪器一览表

    Table  3  List of experimental equipments

    Instrument name Type Manufacturer
    High temperature high pressure reactor CQF0.15 Dalian lean reactor Co. LTD
    TGA STA408PC NETZSCH
    NMR Avance 500 Bruker
    CHSN elemental analyzer VARIOEL Ⅲ German company elementar
    AAS ControAA700 Jena analytical instruments ag
    Physical adsorption apparatus ASAP2020M Micrometrics Inc
    LCR measurement instrument 4263B Agilent company
    下载: 导出CSV

    表  4  催化剂的基本性质

    Table  4  Properties of catalyst

    Analysis item Pre-cure number Post-cure number
    Surface area A/(m2·g-1) 128.08 80.58
    Pore size d/nm 19.33 21.07
    Pore volume v/(cm3·g-1) 0.63 0.26
    Carrier γ-Al2O3 γ-Al2O3
    Active component MoO3, NiO MoS2, Ni3S2
    下载: 导出CSV

    表  5  温度对反应后沥青质平均结构的影响

    Table  5  Effect of reaction temperature on the asphaltene structure

    Sample fA σ HAU/CA fN fP RA RN RT CA* n BI
    GM-asp 0.42 0.50 0.50 0.10 0.47 20.01 5.14 25.15 25.47 2.51 0.25
    360 ℃-asp 0.42 0.46 0.82 0.04 0.63 34.87 3.88 30.99 44.42 11.70 0.49
    380 ℃-asp 0.48 0.16 0.44 0.01 0.52 33.16 0.38 33.53 32.39 3.19 0.46
    400 ℃-asp 0.56 0.38 0.25 0.17 0.27 71.45 22.10 33.54 102.29 2.13 0.29
    420 ℃-asp 0.64 0.28 0.43 0.07 0.30 35.55 3.78 39.33 34.11 3.24 0.38
    下载: 导出CSV

    表  6  时间对反应后沥青质平均结构的影响

    Table  6  Effect of reaction time on the asphaltene structure

    Sample fA σ HAU/CA fN fP RA RN RT CA* n BI
    GM-asp 0.42 0.50 0.50 0.10 0.47 20.01 5.14 25.15 25.47 2.51 0.25
    2 h-asp 0.53 0.21 0.55 0.04 0.52 30.66 2.69 27.96 20.56 4.67 0.15
    3 h-asp 0.56 0.39 0.36 0.12 0.32 46.81 10.60 57.41 48.04 3.01 0.24
    4 h-asp 0.56 0.38 0.25 0.17 0.27 57.59 18.33 75.93 102.29 1.73 0.29
    5 h-asp 0.58 0.10 0.17 0.16 0.31 58.10 18.45 76.56 218.57 1.00 0.35
    下载: 导出CSV

    表  7  温度对反应后胶质平均结构的影响

    Table  7  Effect of reaction temperature on the resin structure

    Sample fA σ HAU/CA fN fP RA RN RT CA* n BI
    GM-res 0.31 0.55 0.77 0.06 0.64 9.56 2.09 11.66 10.69 3.06 0.20
    360 ℃-res 0.28 0.67 0.77 0.13 0.60 5.55 3.13 8.68 10.63 1.94 0.34
    380 ℃-res 0.28 0.68 0.73 0.14 0.58 5.05 3.26 8.32 11.81 1.62 0.26
    400 ℃-res 0.37 0.49 0.67 0.12 0.51 5.88 2.25 8.13 14.16 1.53 0.21
    420 ℃-res 0.41 0.46 0.70 0.11 0.48 5.72 1.92 7.64 12.96 1.63 0.31
    下载: 导出CSV

    表  8  时间对反应后胶质平均结构的影响

    Table  8  Effect of reaction time on the resin structure

    Sample fA σ HAU/CA fN fP RA RN RT CA* n BI
    GM-res 0.31 0.55 0.77 0.06 0.64 9.56 2.09 11.66 10.69 3.06 0.20
    2 h-res 0.36 0.50 0.61 0.09 0.56 9.71 2.74 12.45 16.68 1.98 0.20
    3 h-res 0.36 0.52 0.67 0.11 0.53 7.13 2.47 9.60 14.11 1.80 0.18
    4 h-res 0.37 0.53 0.67 0.14 0.50 5.19 2.49 7.67 13.76 1.42 0.18
    5 h-res 0.38 0.50 0.57 0.12 0.52 8.23 3.10 11.33 19.55 1.37 0.21
    下载: 导出CSV
  • [1] 王海彦, 齐振东, 鄢景森, 魏民. Ti掺杂对Ni2P/SBA-15催化剂加氢脱氮催化性能的影响[J].石油学报(石油加工), 2015, 31(6):1281-1288. doi: 10.3969/j.issn.1001-8719.2015.06.005

    WANG Hai-yan, QI Zhen-dong, YAN Jing-sen, WEI Min. The effect of ti doping in Ni2P/SBA-15 catalyst on its catalytic hydrodenitrogenation performance[J]. Acta Pet Sin(Pet Process Sect), 2015, 31(6):1281-1288. doi: 10.3969/j.issn.1001-8719.2015.06.005
    [2] LI Z K, WANG G, LIU Y D, GAO J S, XU C M, LIANG Y M, WANG X Q. Study on reaction performance and competitive adsorption effect during coker gas oil catalytic cracking[J]. Fuel Process Technol, 2013, 115(11):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbf2587ad18505886f97a3d8a9f1a454
    [3] 卜蔚达.重油加氢技术特点和发展趋势[J].化学工程与装备, 2010, 3:113-115. http://d.old.wanfangdata.com.cn/Periodical/fjhg201003038

    BU Wei-da. Characteristics and development trend of heavy oil hydrogenation technology[J]. Chem Eng Equip, 2010, 3:113-115. http://d.old.wanfangdata.com.cn/Periodical/fjhg201003038
    [4] 梁文杰.重质油化学[M].山东:石油大学出版社, 2000:2-7.

    LIANG Wen-jie. Heavy Oil Chemistry[M]. Shandong:Petroleum University Press, 2000:2-7.
    [5] CERQUEIRA H S, CAEIRO G, COSTA L, RAMÔA R F. Deactivation of FCC catalysts[J]. J Mol Catal A:Chem, 2008, 292(1/2):1-13. doi: 10.1016-j.cattod.2007.05.021/
    [6] 刘美, 刘铁斌, 袁胜华, 赵德智.中东常压渣油加氢处理过程中含硫化合物的分子转化规律[J].石油学报(石油加工), 2016, 32(2):319-325. doi: 10.3969/j.issn.1001-8719.2016.02.013

    LIU Mei, LIU Tie-bin, YUAN Sheng-hua, ZHAO De-zhi. Transformation of sulfur-containing compounds in hydrotreating of middle east atmospheric residue[J]. Acta Pet Sin(Pet Process Sect), 2016, 32(2):319-325. doi: 10.3969/j.issn.1001-8719.2016.02.013
    [7] CAEIRO G, COSTA A F, CERQUEIRA H S, MAGNOUX P, LOPES J M, MATIAS P, RAMÔA R F. Nitrogen poisoning effect on the catalytic cracking of gasoil[J]. Appl Catal A:Gen, 2007, 320(3):8-15. https://www.sciencedirect.com/science/article/abs/pii/S0926860X06008908
    [8] 马加利尔.石油化学加工过程理论基础[M].徐亦方等译.北京: 石油工业出版社, 1982: 145-161.

    MAGALLAL. Theoretical Basis of Petrochemical Processing[M]. Translated by XU Yi-fang et al. Beijing: Petroleum Industry Press, 1982: 145-161.
    [9] ZHANG L L, MAO H X, ZHANG G D, YANG G G, LI L, YANG C H. Relationships between electrical conductivity variation and coking characteristics of residue during thermal reaction through online equipment[J]. Energy Fuels, 2016, 30(7):5404-5410. doi: 10.1021/acs.energyfuels.6b00453
    [10] ZHANG L L, YANG G H, QUE G H. The conglomerating characteristics of asphaltenes from residue during thermal reaction[J]. Fuel, 2005, 84(7):1023-1026. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff739b4d9a28e677aa3250640024eff0
    [11] 蒋立敬.渣油加氢反应动力学及组合工艺研究[D].大连: 大连理工大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10141-1011109379.htm

    JIANG Li-jing. Study on hydrotreating kinetics and combination process of residual oil[D]. Dalian: Dalian University of Technology, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10141-1011109379.htm
    [12] 梁景程, 马守涛, 周永利.混合原油评价中碳、氢元素含量分析[J].石油与天然气化工, 2011, 40(4):394-395. doi: 10.3969/j.issn.1007-3426.2011.04.017

    LIANG Jing-cheng, MA Shou-tao, ZHOU Yong-li. Analysis of carbon and hydrogen content in evaluation of mixed crude oil[J]. Pet Nat Gas Chem, 2011, 40(4):394-395. doi: 10.3969/j.issn.1007-3426.2011.04.017
    [13] 王犇, 黄科林, 孙果宋, 张雪旺, 曹咏梅, 张守利. XRD分析——在固体催化剂体相结构研究中的应用[J].大众科技, 2008, (12):109-111. doi: 10.3969/j.issn.1008-1151.2008.12.049

    WANG Ben, HUANG Ke-Lin, SUN Guo-song, ZHANG Xue-wang, CAO Yong-mei, ZHANG Shou-li. XRD analysis-Application in solid catalyst phase structure research[J]. Public Sci Technol, 2008, (12):109-111. doi: 10.3969/j.issn.1008-1151.2008.12.049
    [14] ZHANG H Y, WANG Y, SHAO S S, XIAO R. An experimental and kinetic modeling study including coke formation for catalytic pyrolysis of furfural[J]. Combust Flame, 2016, (173):258-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c6197d695146ecf98fdb4e27ca427c77
    [15] 孙昱东.原料组成对渣油加氢转化性能及催化剂性质的影响[D].上海: 华东理工大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10251-1011175323.htm

    SUN Yu-dong. Influence of raw material composition on hydrogenation performance and catalyst properties of residual oil[D]. Shanghai: East China University of Science and Technology, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10251-1011175323.htm
    [16] SHI Q, XU C M, ZHAO S Q, KENG H C, ZHANG Y H, GAO W. Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry[J]. Energy Fuels, 2010, 24(1):563-569.
    [17] 张会成, 颜涌捷, 齐邦峰, 孙万付, 张宏玉.渣油加氢处理对渣油胶体稳定性的影响[J].石油与天然气化工, 2007, 36(3):197-200. doi: 10.3969/j.issn.1007-3426.2007.03.007

    ZHANG Hui-cheng, YAN Yong-jie, QI Bang-feng, SUN Wan-fu, ZHANG Hong-yu. Influence of residue hydrotreating on the stability of residue colloid[J]. Pet Nat Gas Chem, 2007, 36(3):197-200. doi: 10.3969/j.issn.1007-3426.2007.03.007
    [18] SUN Y D, YANG C H, ZHAO H, SHAN H H, SHEN B X. Influence of asphaltene on the residue hydrotreating reaction[J]. Energy Fuels, 2010, 24(9):5008-5011. doi: 10.1021/ef1005385
    [19] 梁文杰.石油化学[M].东营:石油大学出版社. 1995:64-66.

    LIANG Wen-jie. Heavy Oil Chemistry[M]. Dongying:Petroleum University Press. 1995:64-66.
    [20] 赵辉.渣油加氢转化规律研究[D].青岛: 中国石油大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10425-2009222754.htm

    ZHAO Hui. Research on hydrogen conversion law of residue oil[D]. Qingdao: China University of Petroleum, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10425-2009222754.htm
    [21] 于双林.渣油加氢体系胶体性质的研究[D].青岛: 中国石油大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10425-2010280196.htm

    YU Shuang-lin. Colloidal properties of residue hydrotreating system[D]. Qingdao: China University of Petroleum, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10425-2010280196.htm
    [22] 乔进帅, 张龙力, 陈朋伟, 曹哲哲, 山红红.胶质和沥青质对渣油胶体稳定性的影响述评[J].应用化工, 2017, 46(6):1180-1184. doi: 10.3969/j.issn.1671-3206.2017.06.036

    QIAO Jin-shuai, ZHANG Long-li, CHEN Peng-wei, CAO Zhe-zhe, SHAN Hong-hong. Review on the influence of colloid and asphalt quality on the stability of residual oil colloid[J]. Appl Chem Ind, 2017, 46(6):1180-1184. doi: 10.3969/j.issn.1671-3206.2017.06.036
    [23] ANCHEYTA J, CENTENO G, TREJO F, SPEIGHT J G. Asphaltene characterization as function of time on-stream during hydroprocessing of Maya crude[J]. Catal Today, 2005, 109:162-166. doi: 10.1016/j.cattod.2005.08.004
    [24] 阙国和.石油组成与转化化学[M].山东:石油大学出版社. 2008:288-380.

    QUE Guo-he. Petroleum Composition and Transforming Chemistry[M]. Shandong:Petroleum University Press. 2008:288-380.
    [25] 王雷.渣油加氢工艺的研究与应用[J].当代化工, 2005, 34(3):157-158. doi: 10.3969/j.issn.1671-0460.2005.03.004

    WANG Lei. Research and application of residual oil hydrogenation process[J]. Contemp Chem Ind, 2005, 34(3):157-158. doi: 10.3969/j.issn.1671-0460.2005.03.004
    [26] ZHANG H Y, WANG Y, SHAO S S, XIAO R. An experimental and kinetic modeling study including coke formation for catalytic pyrolysis of furfural[J]. Combust Flame, 2016, 173:258-265. doi: 10.1016/j.combustflame.2016.08.019
    [27] 刘勇军, 邹瑜.渣油加氢脱金属催化剂的积炭分析[J].华侨大学学报(自然科学版), 2014, 35(2):180-184. http://cdmd.cnki.com.cn/Article/CDMD-10141-1016217905.htm

    LIU Yong-jun, ZOU Yu. Carbon deposition analysis of hydro-demetalization catalyst for residue oil[J]. J Huaqiao Univ(Nat Sci Ed), 2014, 35(2):180-184. http://cdmd.cnki.com.cn/Article/CDMD-10141-1016217905.htm
    [28] 张会成, 马波, 李景斌, 刘淑琴, 耿敬远, 王继锋.渣油加氢处理催化剂积炭分析[J].当代化工, 2008, 37(3):277-282. doi: 10.3969/j.issn.1671-0460.2008.03.016

    ZHANG Hui-cheng, MA Bo, LI Jing-bin, LIU Shu-qin, GENG Jing-yuan, WANG Ji-feng. Analysis of catalyst carbon deposition in residue hydrotreating[J]. Contemp Chem Ind, 2008, 37(3):277-282. doi: 10.3969/j.issn.1671-0460.2008.03.016
    [29] 林建飞, 胡大为, 杨清河, 聂红.固定床渣油加氢催化剂表面积炭分析[J].石油炼制与化工, 2016, 47(10):1-5. doi: 10.3969/j.issn.1005-2399.2016.10.001

    LIN Jian-fei, HU Da-wei, YANG Qing-he, NIE Hong. Analysis of carbon deposition on surface of fixed-bed residue hydrotreating catalyst[J]. Pet Process Petrochem, 2016, 47(10):1-5. doi: 10.3969/j.issn.1005-2399.2016.10.001
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  54
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-20
  • 修回日期:  2019-06-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-08-10

目录

    /

    返回文章
    返回