留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内在矿物对高灰褐煤CO2气化的影响研究

李昌伦 王永刚 林雄超 田震 武欣 杨远平 张海永 许德平

李昌伦, 王永刚, 林雄超, 田震, 武欣, 杨远平, 张海永, 许德平. 内在矿物对高灰褐煤CO2气化的影响研究[J]. 燃料化学学报(中英文), 2017, 45(7): 780-788.
引用本文: 李昌伦, 王永刚, 林雄超, 田震, 武欣, 杨远平, 张海永, 许德平. 内在矿物对高灰褐煤CO2气化的影响研究[J]. 燃料化学学报(中英文), 2017, 45(7): 780-788.
LI Chang-lun, WANG Yong-gang, LIN Xiong-chao, TIAN Zhen, WU Xin, YANG Yuan-ping, ZHANG Hai-yong, XU De-ping. Influence of inherent minerals on CO2 gasification of a lignite with high ash content[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 780-788.
Citation: LI Chang-lun, WANG Yong-gang, LIN Xiong-chao, TIAN Zhen, WU Xin, YANG Yuan-ping, ZHANG Hai-yong, XU De-ping. Influence of inherent minerals on CO2 gasification of a lignite with high ash content[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 780-788.

内在矿物对高灰褐煤CO2气化的影响研究

基金项目: 

国家自然科学基金 21406261

国家科技支撑计划项目 2012BAA04B02

详细信息
    通讯作者:

    王永刚, Tel: 010-62339882, E-mail: wyg1960@126.com

  • 中图分类号: TQ541

Influence of inherent minerals on CO2 gasification of a lignite with high ash content

Funds: 

the National Natural Science Foundation of China 21406261

the Plan of National Science and Technology Support 2012BAA04B02

  • 摘要: 利用分选结合逐级酸洗的方法制备出不同灰含量和矿物组成的褐煤煤样,使用沉降管反应器(DTR)和热重分析仪(TGA)研究内在矿物在1 000-1 200℃对褐煤CO2气化的影响。结果表明,内在矿物对褐煤CO2气化具有促进作用,且促进机制具有温度敏感性。低温时(1 000℃),内在矿物可通过增加初生半焦微晶结构的无序度,间接提高气化碳转化率。高温时(1 100-1 200℃),内在矿物通过催化煤焦气化,直接促进气化碳转化率的上升。碱性指数不适用于表征本研究的褐煤内在矿物的催化作用。Ca是内在矿物中影响整体催化能力的主要成分,而且羧酸盐形式的Ca是其中的活性组分。不同的催化机制是导致煤焦中钙的催化活性因其化学形式而异的根本原因。羧酸盐形式的Ca可降低煤焦气化反应的活化能,而CaO则提高反应的表观频率因子。
  • 图  1  煤样的FT-IR谱图

    Figure  1  FT-IR spectra of lignite samples

    图  2  煤样不同温度的气化碳转化率

    Figure  2  Carbon conversion of lignite samples at different gasification temperatures

    : 1 000 ℃; : 1 100 ℃; : 1 200 ℃;

    图  3  煤样的碱性指数及不同温度热解半焦中可萃取AAEM总量

    Figure  3  Alkaline index of lignite samples and total amount of extractable AAEM in chars from pyrolysis

    图  4  热解半焦Raman光谱的ID/ I(GR +VR+VL)

    Figure  4  Raman band ratio (ID/I(GR +VR+VL)) for chars form pyrolysis of lignite samples

    图  5  1 000 ℃热解半焦等温气化反应性能

    Figure  5  Isothermal gasification reactivity for chars from 1 000 ℃ pyrolysis of lignite samples

    (a): 900 ℃; (b): 1 000 ℃

    图  6  半焦中Ca的分级萃取结果

    Figure  6  Ca fractional extraction results of chars

    图  7  非等温气化反应的TGA曲线

    Figure  7  TGA curves of non-isothermal gasification;

    (a): weight loss curve; (b): weight loss rate curve —●—: char; ——: char+CaO; —▲—: char+CaCO3; ——: char+Ca(OAc)2; —■—: CaCO3; ——: Ca(OAc)2

    图  8  添加不同催化剂半焦气化后的SEM照片及对应的Ca元素分布的EDS分析

    Figure  8  SEM images of gasified chars added catalysts and corresponding Ca distribution obtained by EDS analysis

    (a): surface morphology of char; (b): Ca distribution

    图  9  三种半焦的气化反应动力学参数

    Figure  9  Gasification kinetic parameters of three chars

    表  1  煤样的工业分析和元素分析

    Table  1  Proximate analysis and ultimate analysis of the coals

    表  2  灰分的矿物成分

    Table  2  Inorganic constituents contents in coal samples in an oxide form

    表  3  热解半焦的收率

    Table  3  Yield of the char

  • [1] 王辅臣, 于广锁, 龚欣, 刘海峰, 王亦飞, 梁钦峰.大型煤气化技术的研究与发展[J].化工进展, 2009, 28(2):173-180. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200902002.htm

    WANG Fu-chen, YU Gang-suo, GONG Xin, LIU Hai-feng, WANG Yi-fei, LIANG Qin-feng. Research and development of large-scale coal gasification technology[J]. Chem Ind Eng Prog, 2009, 28(2):173-180. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200902002.htm
    [2] 戴和武, 杜铭华, 谢可玉, 王伟黎.我国低灰分褐煤资源及其优化利用[J].中国煤炭, 2001, 27(2):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGME200102002.htm

    DAI He-wu, DU Ming-hua, XIE Ke-yu, WANG Wei-li. Low ash lignite resources in China and its optimization and utilization[J]. China Coal, 2001, 27(2):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGME200102002.htm
    [3] CORELLA J, TOLEDO J M, MOLINA G. Steam gasification of coal at low-medium (600-800 degrees C) temperature with simultaneous CO2 capture in fluidized bed at atmospheric pressure:The effect of inorganic species. 1. Literature review and comments[J]. Ind Eng Chem Res, 2006, 45(18):6137-6146. doi: 10.1021/ie0602658
    [4] QUYN D M, WU H, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel, 2003, 82(5):587-593. doi: 10.1016/S0016-2361(02)00323-X
    [5] ZHANG F, XU D P, WANG Y G, WANG Y, GAO Y, POPA T, FAN M H. Catalytic CO2 gasification of a Powder River Basin coal[J]. Fuel Process Technol, 2015, 130:107-116. doi: 10.1016/j.fuproc.2014.09.028
    [6] ZHANG F, XU D, WANG Y, ARGYLE M D, FAN M. CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst[J]. Appl Energy, 2015, 145:295-305. doi: 10.1016/j.apenergy.2015.01.098
    [7] LI Y, YANG H P, HU J H, WANG X H, CHEN H P. Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification[J]. Fuel, 2014, 117:1174-1180. doi: 10.1016/j.fuel.2013.08.066
    [8] WANG Y, ZHU S, GAO M, YANG Z, YAN L, BAI Y, LI F. A study of char gasification in H2O and CO2 mixtures:Role of inherent minerals in the coal[J]. Fuel Process Technol, 2016, 141(part 1):9-15. http://www.sciencedirect.com/science/article/pii/S0378382015300308
    [9] BENSON S A, HOLM P L. Comparison of inorganic constituents in three low-rank coals[J]. Ind Eng Chen Prod Res Dev, 1985, 24(1):145-149. doi: 10.1021/i300017a027
    [10] SKODRAS G, SAKELLAROPOULOS G P. Mineral matter effects in lignite gasification[J]. Fuel Process Technol, 2002, 77:151-158. http://www.sciencedirect.com/science/article/pii/S0378382002000632
    [11] 白进, 李文, LI Chun-zhu, 白宗庆, 李保庆.高温下煤中矿物质对气化反应的影响[J].燃料化学学报, 2009, 37(2):134-138. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17416.shtml

    BAI Jin, LI Wen, LI Chun-zhu, BAI Zong-qing, LI Bao-qing. Influence of mineral mater on high temeperture of coal char[J]. J Fuel Chem Technol, 2009, 37(2):134-138. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17416.shtml
    [12] SAKAWA M, SAKURAI Y, HARA Y. Influence of coal characteristics on CO2 gasification[J]. Fuel, 1982, 61(8):717-720. doi: 10.1016/0016-2361(82)90245-9
    [13] HATTINGH B B, EVERSON R C, NEOMAGUS H W J P, BUNT J R. Assessing the catalytic effect of coal ash constituents on the CO2 gasification rate of high ash, South African coal[J]. Fuel Process Technol, 2011, 92(10):2048-2054. doi: 10.1016/j.fuproc.2011.06.003
    [14] LI X, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅷ. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006, 85(10/11):1518-1525. http://www.sciencedirect.com/science/article/pii/S0016236106000202
    [15] QUYN D M, WU H W, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel, 2003, 82(5):587-593. doi: 10.1016/S0016-2361(02)00323-X
    [16] AND S M, SRIVASTAVA S K. Minerals transformations in northeastern region coals of india on heat treatment[J]. Energy Fuels, 2006, 20(3):1089-1096. doi: 10.1021/ef050155y
    [17] BAI J, LI W, LI B. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008, 87(4/5):583-591. http://www.sciencedirect.com/science/article/pii/S0016236107000919
    [18] LIN X, WANG C, IDETA K, MIYAWAKI J, NISHIYAMA Y, WANG Y, YOON S, MOCHIDA I. Insights into the functional group transformation of a Chinese brown coal during slow pyrolysis by combining various experiments[J]. Fuel, 2014, 118:257-264. doi: 10.1016/j.fuel.2013.10.081
    [19] 孙加亮, 陈绪军, 王芳, 林雄超, 王永刚.氧气对胜利褐煤水蒸气气化半焦结构及反应性能的影响[J].燃料化学学报, 2015, 43(7):769-778. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18653.shtml

    SUN Jia-liang, CHEN Xu-jun, WANG Fang, LIN Xiong-chao, WANG Yong-gang. Effect of oxygen on the structure and reactivity of char during steam gasificaiton of Shengli brown coal[J]. J Fuel Chem Technol, 2015, 43(7):769-778. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18653.shtml
    [20] TANNER J, KABIR K B, MULLER M, BHATTACHARYA S. Low temperature entrained flow pyrolysis and gasification of a Victorian brown coal[J]. Fuel, 2015, 154(6):107-113. http://www.sciencedirect.com/science/article/pii/S0016236115003658
    [21] MIURA K, HASHIMOTO K, SILVESTON P L. Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity[J]. Fuel, 1989, 68(11):1461-1475. doi: 10.1016/0016-2361(89)90046-X
    [22] LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12):1700-1707. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=12127369
    [23] BENSON S A, HOLM P L. Comparison of inorganic constituents in three low-rank coals[J]. Ind Eng Chen Prod Res Dev, 1985, 24(1):145-149. doi: 10.1021/i300017a027
    [24] ZHANG L, KAJITANI S, UMEMOTO S, WANG S, QUYN D, SONG Y, LI T T, ZHANG S, DONG L, LI C Z. Changes in nascent char structure during the gasification of low-rank coals in CO2[J]. Fuel, 2015, 158:711-718. doi: 10.1016/j.fuel.2015.06.014
    [25] LI C, YANG S, CHEN X, LIN X, WANG Y. The characteristic of Shengli brown coal fractions from heavy medium separation and its influence on CO2 gasification[J]. Fuel Process Technol, 2017, 155:232-237. doi: 10.1016/j.fuproc.2016.06.041
    [26] TAY H L, KAJITANI S, WANG S, LI C Z. A preliminary Raman spectroscopic perspective for the roles of catalysts during char gasification[J]. Fuel, 2014, 121:165-172. doi: 10.1016/j.fuel.2013.12.030
    [27] LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12):1664-1683. http://www.sciencedirect.com/science/article/pii/S0016236107000361
    [28] 唐佳, 王勤辉, 张睿, 施正伦, 岑可法.比表面积和灰分对烟煤半焦气化机理的影响[J].中国电机工程学报, 2015, 35(20):5244-5250. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201520017.htm

    TANG Jia, WANG Qin-hui, ZHANG Rui, SHI Zheng-lun, CEN Ke-fa. Effect of specific surface area and ash content on the mechanisms of bituminous coal char gasification[J]. Proc CSEE, 2015, 35(20):5244-5250. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201520017.htm
    [29] OHTSUKA Y, ASAMI K. Highly active catalysts from inexpensive raw materials for coal gasification[J]. Catal Today, 1997, 39(1/2):111-125. http://www.sciencedirect.com/science/article/pii/S092058619700093X
    [30] 姜明泉. 煤焦碱金属催化水蒸汽气化——产氢行为和催化剂性能的研究[D]. 上海: 华东理工大学, 2013.

    JIANG Ming-quan. The study on alkali catalyzed gasification of coal char:Behaviour of hydrogen produciton and performance of the catalysts[D]. Shanghai:East China University of Science and Technology, 2013.
    [31] RADOVIC L R. Catalytic coal gasification:Use of calcium versus potassium[J]. Fuel, 1984, 63(7):1028-1030. doi: 10.1016/0016-2361(84)90329-6
    [32] GOMEZ A, MAHINPEY N. A new method to calculate kinetic parameters independent of the kinetic model:Insights on CO2 and steam gasification[J]. Chem Eng Res Des, 2015, 95:346-357. doi: 10.1016/j.cherd.2014.11.012
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  29
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-13
  • 修回日期:  2017-05-07
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-07-10

目录

    /

    返回文章
    返回