留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载Fe2O3的Zr基钙钛矿催化剂对逆水煤气反应的影响

牛茹洁 王成章 刘晓越 易春雄 陈梁 米铁 吴正舜

牛茹洁, 王成章, 刘晓越, 易春雄, 陈梁, 米铁, 吴正舜. 负载Fe2O3的Zr基钙钛矿催化剂对逆水煤气反应的影响[J]. 燃料化学学报(中英文), 2019, 47(1): 92-97.
引用本文: 牛茹洁, 王成章, 刘晓越, 易春雄, 陈梁, 米铁, 吴正舜. 负载Fe2O3的Zr基钙钛矿催化剂对逆水煤气反应的影响[J]. 燃料化学学报(中英文), 2019, 47(1): 92-97.
NIU Ru-jie, WANG Cheng-zhang, LIU Xiao-yue, YI Chun-xiong, CHEN Liang, MI Tie, WU Zheng-shun. Preparation of Zr-based perovskite supported Fe2O3 catalyst and its performance in the reverse water gas shift reaction[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 92-97.
Citation: NIU Ru-jie, WANG Cheng-zhang, LIU Xiao-yue, YI Chun-xiong, CHEN Liang, MI Tie, WU Zheng-shun. Preparation of Zr-based perovskite supported Fe2O3 catalyst and its performance in the reverse water gas shift reaction[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 92-97.

负载Fe2O3的Zr基钙钛矿催化剂对逆水煤气反应的影响

基金项目: 

国家自然科学基金 51676081

湖北省重点实验室开放基金 HBIK2017-04

高等学校学科创新引智计划 111 program

高等学校学科创新引智计划 B17019

详细信息
    通讯作者:

    WU Zhneg-shun, E-mail:wuzs@mail.cccnu.edu.cn

  • 中图分类号: TQ54

Preparation of Zr-based perovskite supported Fe2O3 catalyst and its performance in the reverse water gas shift reaction

Funds: 

National Natural Science Foundation of China 51676081

the Open Fund from Hubei Key Laboratory of Industrial Fume & Dust Pollution Control HBIK2017-04

the Program of Introducing Talents of Discipline to University of China 111 program

the Program of Introducing Talents of Discipline to University of China B17019

  • 摘要: 采用固相反应法制备了钙钛矿结构的BaZr0.9Y0.1O3,并用BaZr0.9Y0.1O3作为载体负载Fe2O3,通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)观察负载型催化剂的晶相结构和微观形貌,同时考察了制备的催化剂的逆水煤气反应催化活性。结果表明,BaZr0.9Y0.1O3粉体1200℃煅烧5h时,负载型催化剂具有较好的催化活性;BaZr0.9Y0.1O3对逆水煤气反应有一定的催化作用,负载少量的Fe2O3催化剂可以明显促进CO2还原,在空速为1.13h-1,温度为650℃时,CO收率可以达到31%;催化剂经过长时间运行催化效果良好,制备的催化剂活性较稳定。
  • 图  1  RWGS实验装置示意图

    Figure  1  Schematic diagram of RWGS reaction device

    图  2  不同焙烧时间下制备BZY的XRD谱图

    Figure  2  XRD patterns of BZY prepared with different calcination time

    图  3  BZY负载Fe2O3前后的XRD谱图

    Figure  3  XRD patterns of BZY and BZY loading Fe2O3

    图  4  载体焙烧时间对催化剂性能的影响

    Figure  4  Effect of calcination time of the support on catalyst performance

    图  5  不同Fe2O3负载量对催化剂性能的影响

    Figure  5  Effect of different Fe2O3 loading on catalyst performance

    图  6  650 ℃持续反应催化剂的催化性能

    Figure  6  Catalytic performance of 650 ℃ continuous reaction catalyst

    图  7  升降温序列过程中CO的收率

    Figure  7  CO yield during the heating-up process and the cooling-down process

    图  8  负载型催化剂反应前后的SEM照片

    Figure  8  SEM images of the supported catalysts

    (a): fresh catalyst;
    (b): used catalyst

    图  9  逆水煤气反应过程中CO2转化率和CO收率

    Figure  9  CO2 conversion and CO yield during the reverse water gas reaction

    表  1  CO收率随负载量的变化

    Table  1  CO yield of different Fe2O3 loading catalysts at 650 ℃

    Catalyst BZY BZY+3%Fe2O3 BZY+5% Fe2O3 BZY+8% Fe2O3 BZY+15% Fe2O3 BZY+20% Fe2O3
    CO yield w/% 12.88 32.24 31.14 31.55 26.03 23.88
    下载: 导出CSV
  • [1] 程薇.美国化学协会全国研讨会主题是CO2转化制燃料的技术[J].石油炼制与化工, 2014, 45(1):76. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLH201401029.htm

    CHENG Wei. The theme of the national symposium of the American chemical society is the technology of CO2 conversion to fuel[J]. Pet Process Petrochem, 2014, 45(1):76. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLH201401029.htm
    [2] DAZA Y A, KENT R A, YUNG M M, KUHN J N. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides[J]. Ind Eng Chem Res, 2014, 53(14):5828-5837. doi: 10.1021/ie5002185
    [3] OSHIMA K, SHINAGAWA T, NOGAMI Y, MANBE R, OGO S, SEKINE Y. Low temperature catalytic reverse water gas shift reaction assisted by an electric field[J]. Catal Today, 2014, 232:27-32. doi: 10.1016/j.cattod.2013.11.035
    [4] PETTIGREW D J, TRIMM D L. The effects of rare earth oxides on the reverse water-gas shift reaction on palladium/alumina[J]. Cataly Lett, 1994, 28(2):313-319. doi: 10.1007/BF00806061
    [5] GOGATE M R, DAVIS R J. Comparative study of CO and CO2, hydrogenation over supported Rh-Fe catalysts[J]. Catal Commun, 2010, 11(10):901-906. doi: 10.1016/j.catcom.2010.03.020
    [6] KIM S S, PARK K H, HONG S C. A study of the selectivity of the reverse water-gas-shift reaction over Pt/TiO2 catalysts[J]. Fuel Process Technol, 2013, 108:47-54. doi: 10.1016/j.fuproc.2012.04.003
    [7] WANG X, SHI H, KWAK J H, SZANYI J. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts:Kinetics and transient DRIFTS-MS studies[J]. ACS Catal, 2015, 5(11):6337-6349. doi: 10.1021/acscatal.5b01464
    [8] LIU Y, LIU D. Study of bimetallic Cu-Ni/γ-Al2O3 catalysts for carbon dioxide hydrogenation[J]. Int J Hydrogen Energy, 1999, 24(4):351-354. doi: 10.1016/S0360-3199(98)00038-X
    [9] RONDA-LLORET M, RICO-FRANCES S, SEPULVEDA-ESCRIBANO A, RAMOS-FERNANDEZ E V. CuO/CeO2 catalyst derived from metal organic framework for reverse water-gas shift reaction[J]. Appl Catal A:Gen, 2018, 562:28-36. doi: 10.1016/j.apcata.2018.05.024
    [10] 何孝祥, 顾雄毅, 范琛, 朱贻安. Fe3O4表面逆水煤气反应的DFT研究[J].华东理工大学学报(自然科学版), 2011, 37(4):424-429. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101575707

    HE Xiao-xiang, GU Xiong-yi, FAN Chen, ZHU Yi-an. DFT study of reverse water-gas shift reaction on Fe3O4 surface[J]. J East China Univ Sci Technol, 2011, 37(4):424-429. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101575707
    [11] 代必灿, 周桂林.逆水煤气变换(RWGS)催化剂研究进展[J].化工进展, 2017, 36(7):2473-2480. http://d.old.wanfangdata.com.cn/Periodical/hgjz201707018

    DAI Bi-can, ZHOU Gui-lin. Perspective on catalyst investigation for reverse water-gas shift reaction (RWGS)[J]. Chem Ind Eng Process, 2017, 36(7):2473-2480. http://d.old.wanfangdata.com.cn/Periodical/hgjz201707018
    [12] 李军, 崔凤霞, 李荣.二氧化碳还原技术研究进展[J].精细石油化工, 2017, 34(2):75-82. doi: 10.3969/j.issn.1003-9384.2017.02.018

    LI Jun, CUI Feng-xia, LI Rong. Research progress on carbon dioxide reduction technology[J]. Spec Petrochem, 2017, 34(2):75-82. doi: 10.3969/j.issn.1003-9384.2017.02.018
    [13] KIM D H, HAN S W, YOON H S, KIM Y D. Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability[J]. J Ind Eng Chem, 2015, 23:67-71. doi: 10.1016/j.jiec.2014.07.043
    [14] ERTL G, KNOTZINGER H, SCHUTH F, WEITCAMP J. Handbook of Heterogeneous Catalysis[M]. Germany:VCH Publishers, 2007.
    [15] KIM D H, PARK J L, PARK E J, KIM Y D, Uhm S. Dopant effect of barium zirconate-based perovskite-type catalysts for the intermediate-temperature reverse water gas shift reaction[J]. ACS Catal, 2014, 4(9):3117-3122. doi: 10.1021/cs500476e
    [16] 王同同.全陶瓷双相中空纤维膜的制备及在NH3分解制氢中的应用[D].山东: 山东理工大学, 2017.

    WANG Tong-Tong. Preparation of dual phase ceramic hollow fiber membranes and application in NH3 decomposition for hydrogen production[D]. Shandong: Shandong University of Technology.
    [17] 曹加锋, 朱志文, 刘卫.钙钛矿结构质子导体基固体氧化物燃料电池电解质研究进展[J].硅酸盐学报, 2015, 43(6):734-740. http://d.old.wanfangdata.com.cn/Periodical/gsyxb201506005

    CAO Jia-feng, ZHU Zhi-wen, LIU Wei. Review on perovskite electrolyte for proton-conducting solid oxide fuel cells[J]. J Chin Silic Soc, 2015, 43(6):734-740. http://d.old.wanfangdata.com.cn/Periodical/gsyxb201506005
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  26
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-16
  • 修回日期:  2018-11-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-01-10

目录

    /

    返回文章
    返回