留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid

GU Xiao-min ZHANG Bin LIANG Hao-jie GE Hui-bin YANG Hui-min QIN Yong

谷晓敏, 张斌, 梁浩杰, 葛会宾, 杨慧敏, 覃勇. 利用原子层沉积制备Pt/HZSM-5催化剂用于乙酰丙酸水相加氢制备戊酸[J]. 燃料化学学报(中英文), 2017, 45(6): 714-722.
引用本文: 谷晓敏, 张斌, 梁浩杰, 葛会宾, 杨慧敏, 覃勇. 利用原子层沉积制备Pt/HZSM-5催化剂用于乙酰丙酸水相加氢制备戊酸[J]. 燃料化学学报(中英文), 2017, 45(6): 714-722.
GU Xiao-min, ZHANG Bin, LIANG Hao-jie, GE Hui-bin, YANG Hui-min, QIN Yong. Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 714-722.
Citation: GU Xiao-min, ZHANG Bin, LIANG Hao-jie, GE Hui-bin, YANG Hui-min, QIN Yong. Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 714-722.

利用原子层沉积制备Pt/HZSM-5催化剂用于乙酰丙酸水相加氢制备戊酸

基金项目: 

the National Natural Science Foundation of China 21403271

the National Natural Science Foundation of China 21673269

the Natural Science Foundation of Shanxi Province 2015021046

详细信息
  • 中图分类号: O643

Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid

Funds: 

the National Natural Science Foundation of China 21403271

the National Natural Science Foundation of China 21673269

the Natural Science Foundation of Shanxi Province 2015021046

More Information
  • 摘要: 利用原子层沉积(ALD)技术制备出Pt/HZSM-5催化剂,并用于乙酰丙酸(LA)水相加氢制戊酸(VA)。在HZSM-5上沉积五个循环时的5Pt/HZSM-5催化剂,其VA收率高达91.4%,且具有较高的稳定性。研究表明,Pt加氢位点和HZSM-5酸性位点距离越近越有利于VA的选择性生成。通过延长沉积的扩散时间,ALD可将Pt沉积到HZSM-5的微孔通道中,但对HZSM-5的微孔结构和酸性位点影响较小,这体现出ALD在保护HZSM-5结构上的优势。随着ALD沉积Pt循环数的增加,Pt纳米颗粒的平均粒径、表面Pt的电子状态、HZSM-5表面酸位点都没有发生明显的变化,分子筛孔道中的Pt比例则逐渐降低,这导致VA生成的TOF降低。同时,也通过浸渍法制备了负载在HZSM-5上的Pt催化剂作为对比,结果表明,浸渍法导致HZSM-5的孔结构受损,形成了更多的微孔,表面酸性位点数目降低,其催化活性、VA选择性和稳定性都显著低于ALD制备的催化剂。
  • Figure  1  Transformation of LA to chemical

    Figure  2  Pt contents as a function of the ALD cycle number

    Figure  3  XRD patterns of the different samples

    Figure  4  TEM, HRTEM images, and particle size histograms of different samples

    (a), (b): 3Pt/HZSM-5; (c): 5Pt/HZSM-5; (d): 7Pt/HZSM-5; (e): 10Pt/HZSM-5; (f): Pt/HZSM-5-IM

    Figure  5  N2 adsorption-desorption isotherms of HZSM-5, 5Pt/HZSM-5

    Figure  6  NH3-TPD patterns of the samples

    Figure  7  XPS of Pt 4f spectra of xPt/HZSM-5 catalysts

    Figure  8  Conversion of LA (a), selectivity of VA (b), TOF of VA formation (c) of the catalysts reaction conditions: 200 ℃, 1 MPa, 50 mg catalyst, 2% LA aqueous solution

    ■ : 3Pt/HZSM-5; ● : 5Pt/HZSM-5; ▲ : 7Pt/HZSM-5; ▼ : 10Pt/HZSM-5; ◆ : Pt/HZSM-5-IM

    Table  1  Catalytic performance of different catalysts in aqueous LA hydrogenationa

    Table  2  Physicochemical characteristics of HZSM-5 and HZSM-5 supported Pt catalystsa

    Table  3  Summary of XPS results for Pt 4f of the xPt/HZSM-5 catalysts

  • [1] RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, BRITOVSEK G, CAIRNEY J, ECKERT C A, FREDERICK W J, HALLETT J P, LEAK D J, LIOTTA C L, MIELENZ J R, MURPHY R, TEMPLER R, TSCHAPLINSK T. The path forward for biofuels and biomaterials[J]. Science, 2006, 311 (5760): 484-489. doi: 10.1126/science.1114736
    [2] YUAN J, LI S S, YU L, LIU Y M, CAO Y, HE H Y, FAN K N. Copper-based catalysts for the efficient conversion of carbohydrate biomass into γ-valerolactone in the absence of externally added hydrogen[J]. Energy Environ Sci, 2013, 6 (11): 3308-3313. doi: 10.1039/c3ee40857d
    [3] LUO W H, DEKA U, BEALE A M, VAN ECK E R H, BRUIJNINCX P C A, WECKHUYSEN B M. Ruthenium-catalyzed hydrogenation of levulinic acid: Influence of the support and solvent on catalyst selectivity and stability[J]. J Catal, 2013, 301 : 175-186. doi: 10.1016/j.jcat.2013.02.003
    [4] LANGE J P, PRICE R, AYOUB P M, LOUIS J, PETRUS L, CLARKE L, GOSSELINK H. Valeric biofuels: A platform of cellulosic transportation fuels[J]. Angew Chem Int Ed, 2010, 49 (26): 4479-4483. doi: 10.1002/anie.201000655
    [5] GALLETTI A M R, ANTONETTI C, DE LUISE V, MARTINELLI M. A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid[J]. Green Chem, 2012, 14 (3): 688-694. doi: 10.1039/c2gc15872h
    [6] PAN T, DENG J, XU Q, XU Y, GUO Q X, FU Y. Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts[J]. Green Chem, 2013, 15 (10): 2967-2974. doi: 10.1039/c3gc40927a
    [7] PACE V, HOYOS P, CASTOLDI L, DOMINGUEZ D E MARIA P, ALCANTARA A R. 2-methyltetrahydrofuran (2-MeTHF): A biomass-derived solvent with broad application in organic chemistry[J]. ChemSusChem, 2012, 5 (8): 1369-1379. doi: 10.1002/cssc.v5.8
    [8] SERRANO-RUIZ J C, WANG D, DUMESIC J A. Catalytic upgrading of levulinic acid to 5-nonanone[J]. Green Chem, 2010, 12 (4): 574-577. doi: 10.1039/b923907c
    [9] YAN K, LAFLEUR T, WU X, CHAI J J, WU G S, XIE X M. Cascade upgrading of γ-valerolactone to biofuels[J]. Chem Commun, 2015, 51 (32): 6984-6987. doi: 10.1039/C5CC01463H
    [10] LUO W H, BRUIJNINCX, P C A, WECKHUYSEN B M. Selective, one-pot catalytic conversion of levulinic acid to pentanoic acid over Ru/HZSM-5[J]. J Catal, 2014, 320 : 33-41. doi: 10.1016/j.jcat.2014.09.014
    [11] KON K, ONODERA W, SHIMIZU K I. Selective hydrogenation of levulinic acid to valeric acid and valeric biofuels by a Pt/HMFI catalyst[J]. Catal Sci Technol, 2014, 4 (9): 3227-3234. doi: 10.1039/C4CY00504J
    [12] SUN P, GAO G, ZHAO Z L, XIA C G, LI F W. Stabilization of cobalt catalysts by embedment for efficient production of valeric biofuel[J]. ACS Catal, 2014, 4 (11): 4136-4142. doi: 10.1021/cs501409s
    [13] HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106 (9): 4044-4098. doi: 10.1021/cr068360d
    [14] ZHANG B, ZHU Y L, DING G Q, ZHENG H Y, LI Y W. Selective conversion of furfuryl alcohol to 1, 2-pentanediol over a Ru/MnOxcatalyst in aqueous phase[J]. Green Chem, 2012, 14 (12): 3402-3409. doi: 10.1039/c2gc36270h
    [15] DENDOOVEN J, GORIS B, DEVLOO-CASIER K, LEVRAU E, BIERMANS E, BAKLANOV M R, LUDWIG K F, VOORT P V D, BALS S, DETAVERNIER C.Tuning the pore size of ink-bottle mesopores by atomic layer deposition[J]. Chem Mater, 2012, 24 (11): 1992-1994. doi: 10.1021/cm203754a
    [16] LEUS K, DENDOOVEN J, TAHIR N, RAMACHANDRAN R, MELEDINA M, TURNER S, VAN TENDELOO G, GOEMAN J, VAN DER EYCKEN J, DETAVERNIER C, VAN DER VOORT P. Atomic layer deposition of Pt nanoparticles with in the cages of MIL-101: A mild and recyclable hydrogenation catalyst[J]. Nanomaterials, 2016, 6 (3): 45. doi: 10.3390/nano6030045
    [17] GEORGE S M, STEVEN M G. Atomic layer deposition: An overview[J]. Chem Rev, 2009, 110 (1): 111-131. doi: 10.1021/cr900056b
    [18] GAO Z, DONG M, WANG G Z, SHENG P, WU Z W, YANG H M, ZHANG B, WANG G F, WANG J G, QIN Y. Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions[J]. Angew Chem Int Ed, 2015, 54 (31): 9006-9010. doi: 10.1002/anie.201503749
    [19] LU J L, ELAM J W, STAIR P C. Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst "bottom-up" synthesis[J]. Surf Sci Rep, 2016, 71 (2): 410-472. doi: 10.1016/j.surfrep.2016.03.003
    [20] LI J W, ZHANG B, CHEN Y, ZHANG J K, YANG H M, ZHANG J W, LU X L, LI G C, QIN Y. Styrene hydrogenation performance of Pt nanoparticles with controlled size prepared by atomic layer deposition[J]. Catal Sci Technol, 2015, 5 (8): 4218-4223. doi: 10.1039/C5CY00598A
    [21] ZHANG B, CHEN Y, LI J W, PIPPEL E, YANG H M, GAO Z, QIN Y. High efficiency Cu-ZnO hydrogenation catalyst: The tailoring of Cu-ZnO interface sites by molecular layer deposition[J]. ACS Catal, 2015, 5 (9): 5567-5573. doi: 10.1021/acscatal.5b01266
    [22] ZHAN B, GUO X W, LIANG H J, GE H B, GU X M, CHEN S, YANG H M, QIN Y. Tailoring Pt-Fe2O3 interfaces for selective reductive coupling reaction to synthesize imine[J]. ACS Catal, 2016, 6 (10): 6560-6566. doi: 10.1021/acscatal.6b01756
    [23] WANG M H, GAO Z, ZHANG B, YANG H M, QIAO Y, CHEN S, GE H B, ZHANG J K, QIN Y. Ultrathin coating of confined Pt nanocatalysts by atomic layer deposition for enhanced catalytic performance in hydrogenation reactions[J]. Chem Eur J, 2016, 22 (25): 8438-8443. doi: 10.1002/chem.v22.25
    [24] SUN S H, ZHANG G X, GAUQUELIN N, CHEN N, ZHOU J Q, YANG S Y, CHEN W F, MENG X B, GENG D S, BANIS M N, LI R Y, YE S Y, KNIGHTS S, BOTTON G A, SHAM T K, SUN X. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Sci Rep, 2013, 3 : 1775. doi: 10.1038/srep01775
    [25] DENDOOVEN J, DEVLOO-CASIER K, IDE M, GRANDFIELD K, DETAVERNIER C. Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering[J]. Nanoscale, 2014, 6 (24): 14991-14998. doi: 10.1039/C4NR05049E
    [26] DETAVERNIER C, DENDOOVEN J, SREE S P, LUDWIG K F, MARTENS J A. Tailoring nanoporous materials by atomic layer deposition[J]. Chem Soc Rev, 2011, 40 (11): 5242-5253. doi: 10.1039/c1cs15091j
    [27] HE Y J, NIVARTHY G S, EDER F, SESHAN K, LERCHER J A. Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36[J]. Microporous Mesoporous Mater, 1998, 25 (1): 207-224. http://doc-test.utsp.utwente.nl/73860/
    [28] ARICOÁA A S, SHUKLAB A K, KIMC H, PARKC S, MINC M, ANTONUCCIA V. An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen[J]. Appl Surf Sci, 2001, 172 (1): 33-40. http://cat.inist.fr/?aModele=afficheN&cpsidt=893464
    [29] LEI Y, LU J L, LUO X Y, WU T P, DU P, ZHANG X Y, REN Y, WEN J G, MILLER D J, MILLER J T, SUN Y K, ELAM J W, AMINE K. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: Application for rechargeable lithium-O2 battery[J]. Nano Lett, 2013, 13 (9): 4182-4189. doi: 10.1021/nl401833p
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  22
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-09
  • 修回日期:  2017-04-19
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-06-10

目录

    /

    返回文章
    返回