留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载Mn的Fe基MOFs脱汞剂烟气脱汞研究

张晓奇 沈伯雄 张笑 陈叮叮

张晓奇, 沈伯雄, 张笑, 陈叮叮. 负载Mn的Fe基MOFs脱汞剂烟气脱汞研究[J]. 燃料化学学报(中英文), 2019, 47(1): 113-120.
引用本文: 张晓奇, 沈伯雄, 张笑, 陈叮叮. 负载Mn的Fe基MOFs脱汞剂烟气脱汞研究[J]. 燃料化学学报(中英文), 2019, 47(1): 113-120.
ZHANG Xiao-qi, SHEN Bo-xiong, ZHANG Xiao, CHEN Ding-ding. Study on the mercury removal using Mn loaded Fe-based MOFs[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 113-120.
Citation: ZHANG Xiao-qi, SHEN Bo-xiong, ZHANG Xiao, CHEN Ding-ding. Study on the mercury removal using Mn loaded Fe-based MOFs[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 113-120.

负载Mn的Fe基MOFs脱汞剂烟气脱汞研究

基金项目: 

国家重点研发计划 2018YFB0605101

天津市自然科学重点基金 18JCZDJC39800

天津科技重大专项 18ZXSZSF00040

天津市科普项目 18KPXMSF00080

唐山市科技项目 18130211A

河北省自然科学基金 E2018202180

详细信息
    通讯作者:

    SHEN Bo-xiong, E-mail:shenboxiong0722@sina.com

  • 中图分类号: X511

Study on the mercury removal using Mn loaded Fe-based MOFs

Funds: 

the National Important Research and Development Plan 2018YFB0605101

Key Fund of Tianjin 18JCZDJC39800

the Project of Science and Technology of Tianjin 18ZXSZSF00040

Tianjin Science Popularization Project 18KPXMSF00080

the Project of Science and Technology of Tangshan 18130211A

Fund of Hebei Province E2018202180

  • 摘要: 基于Fe基金属有机骨架(MOFS)作为载体,采用浸渍法制备了负载6% Mn的Mn/MIL-100(Fe)脱汞剂。在模拟烟气中,搭建固定床研究了Mn/MIF-100(Fe)脱除单质汞(Hg0)性能。采用X射线衍射分析(XRD)、X射线电子能谱(XPS)、N2吸附-脱附(BET)和热重分析(TGA)对材料进行表征。研究表明,Mn/MIF-100(Fe)脱除单质汞(Hg0)效率较高,在250℃,空速(GHSV)为180000h-1时,脱汞(Hg0)效率达82%以上。Mn/MIF-100(Fe)主要的脱汞机理是催化氧化,Mn的负载促进了汞的吸附,并随着烟气温度的提高,单质汞的氧化效率逐渐提高。O2和NO促进汞的脱除,SO2和NH3抑制汞的脱除。Mn/MIL-100(Fe)整体上对复杂烟气的适应能力强。
  • 图  1  烟气脱汞系统示意图

    Figure  1  Diagrammatic sketch of the removal of Hg0 in simulative flue gas

    图  2  催化剂的吸附-脱附等温线

    Figure  2  Adsorption desorption isotherms of the catalysts

    图  3  催化剂的BJH孔径分布图

    Figure  3  BJH pore size distribution curves of catalysts

    图  4  不同煅烧温度下脱汞剂的XRD谱图

    Figure  4  XRD pattern of the catalysts calcined at different temperatures

    ◆: Mn3O4; ◇: Mn2O3; ●: Fe2O3

    图  5  脱汞剂Mn 2p3/2的XPS谱图

    Figure  5  Mn 2p3/2 XPS spectra of the catalysts

    (a): Mn/MIL-100 (Fe) catalyst; (b): Mn/Fe2O3 catalyst

    图  6  脱汞剂Fe 2p3/2的XPS谱图

    Figure  6  Fe 2p3/2 XPS spectra of the catalysts

    (a): Mn/MIL-100 (Fe) catalyst; (b): Mn/Fe2O3 catalyst

    图  7  脱汞剂O 1s的XPS谱图

    Figure  7  O 1s XPS spectra of the catalysts

    (a): Mn/MIL-100 (Fe) catalyst; (b): Mn/Fe2O3 catalyst

    图  8  脱汞剂对Hg0脱除效率的影响(1 h)

    Figure  8  Hg0 removal efficiency of the catalysts (1 h)

    图  9  脱汞剂对氧化吸附效率的影响

    Figure  9  The oxidation and adsorption efficiency of Hg0 of the catalysts

    图  10  不同氧浓度对脱汞效率的影响

    Figure  10  Effect of O2 concentration on mercury removal efficiency

    图  11  烟气中其他气体成分对脱汞效率的影响

    Figure  11  Effects of other gas components in flue gas on mercury removal efficiency

    表  1  脱汞剂的比表面积、孔容和孔径

    Table  1  Specific surface area, pore volume and pore diameter ofthe catalysts

    Sample BET surface area A/(cm2·g-1) Pore volume v/(cm3·g-1) Average pore diameter d/nm
    MIL-100(Fe) 1223.3 0.66 2.17
    Mn/MIL-100(Fe) 141.8 0.29 8.31
    Mn/Fe2O3 7.6 0.0007 0.04
    下载: 导出CSV

    表  2  催化剂金属离子各价态变换

    Table  2  Percentage of valence state of each ion in the catalysts

    Catalyst Percentagew/%
    Mn2+/Mnx+ Mn3+/ Mnx+ Mn4+/Mnx+ Fe2+/ Fex+ Fe3+/Fex+ O/(O+ O) O/(O+ O)
    Mn/ MIL-100(Fe) fresh
    used
    6.12
    6.24
    67.72
    63.76
    26.16
    30
    42.2
    39.8
    57.80
    60.03
    77.44
    67.73
    22.56
    32.27
    Mn/Fe2O3 fresh
    used
    -
    -
    32.34
    50.60
    67.66
    49.40
    36.34
    39.97
    63.36
    60.03
    62.02
    60.28
    37.98
    39.71
    Mnx+: Mn2++Mn3++Mn4+; Fex+: Fe2++Fe3+
    下载: 导出CSV
  • [1] DAHLAN I, KEATTEONG L, KAMARUDDIN A H, MOHAMED A R. Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal[J]. J Hazard Mater, 2009, 166(2):1556-1559. http://www.sciencedirect.com/science/article/pii/S0304389408018645
    [2] LI H L, WU C Y, LI Y, ZHANG J Y. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environ Sci Technol, 2011, 45(17):7394-7400. doi: 10.1021/es2007808
    [3] YUAN Y, ZHANG J Y, LI H L, LI Y, ZHAO Y C, ZHENG C G. Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis[J]. Chem Eng J, 2012, 192(2):21-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e0e9f1bc91a9285b455b29f88706dbf
    [4] LI Y, MURPHY P D, WU C Y, POWERS K W, BONZONGO J-C J. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas[J]. Environ Sci Technol, 2008, 42(14):5304-5309. doi: 10.1021/es8000272
    [5] LI B, WANG H L, XU Y Y, XUE J M. Study on mercury oxidation by SCR catalyst in coal-fired power plant[J]. Chem Eng J, 2017, 141(3):339-344. http://www.onacademic.com/detail/journal_1000040163327810_21ba.html
    [6] ESWARAN S, STENGER H G. Understanding mercury conversion in selective catalytic reduction (SCR) catalysts[J]. Energy Fuels, 2005, 19(6):2328-2334. doi: 10.1021/ef050087f
    [7] LI H L, WU C Y, LI Y, ZHANG J Y. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Appl Catal B:Environ, 2012, 111-112(3):381-388. http://www.sciencedirect.com/science/article/pii/S0926337311004917
    [8] LIU Y, WANG Y J, WANG H Q, WU Z B. Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol-gel method[J]. Catal Commun, 2011, 12(14):1291-1294. doi: 10.1016/j.catcom.2011.04.017
    [9] YAMAGUCHI A, AKIHO H, ITO S. Mercury oxidation by copper oxides in combustion flue gases[J]. Powder Technol, 2008, 180(1/2):222-226. doi: 10.1016-j.powtec.2007.03.030/
    [10] ZHANG F, CHEN C, XIAO W M, XU LI, ZHANG N. CuO/CeO2 catalysts with well-dispersed active sites prepared from Cu3(BTC)2 metal-organic framework precursor for preferential CO oxidation[J]. Catal Commun, 2012, 26(35):25-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=77699f83a16ad842cf231c8776d0ab99
    [11] ROSI N L, ECKERT J, EDDAOUDI M, VODAK D T, KIM J, O'KEEFFE M, YAGHI O M. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622):1127-1129. doi: 10.1126/science.1083440
    [12] YAN B L, ZHANG L J, TANG Z Y, AL-MAMUN M, ZHAO H J, SU X T. Palladium-decorated hierarchical titania constructed from the metal-organic frameworks NH2 -MIL-125(Ti) as a robust photocatalyst for hydrogen evolution[J]. Appl Catal B:Environ, 2017, 218(5):743-750.
    [13] LU W G, WEI Z W, GU Z Y, LIU T F, PARK J, PARK J, TIAN J, ZHANG M W, ZHANG Q, THOMAS G, BOSCH M, ZHOU H. Tuning the structure and function of metal-organic frameworks via linker design[J]. Chem Soc Rev, 2014, 43(16):5561-5593. doi: 10.1039/C4CS00003J
    [14] XU B, LI X J, CHEN Z M, ZHANG T, LI C C. Pd@MIL-100(Fe) composite nanoparticles as efficient catalyst for reduction of 2/3/4-nitrophenol:Synergistic effect between Pd and MIL-100(Fe)[J]. Microporous Mesoporous Mater, 2018, 255(1):1-6. http://cn.bing.com/academic/profile?id=cfe88f51a3465546bd25b4301d378a99&encoded=0&v=paper_preview&mkt=zh-cn
    [15] BHATTACHARJEE A, GUMMA S, PURKAIT M K. Fe3O4 promoted metal organic framework MIL-100(Fe) for the controlled release of doxorubicin hydrochloride[J]. Microporous Mesoporous Mater, 2017, 259(15):203-210.
    [16] ZHANG X, SHEN B X, ZHANG X Q, WANG F M, CHI G L, SI M. A comparative study of manganese-cerium doped metal-organic frameworks prepared via impregnation and in situ methods in the selective catalytic reduction of NO[J]. RSC Adv, 2017, 7(10):5928-5936. doi: 10.1039/C6RA25413F
    [17] YANG J P, ZHAO Y C, LIANG S F, ZHANG S B, MA S M, LI H L, ZHANG J Y, ZHENG C G. Magnetic iron-manganese binary oxide supported on carbon nanofiber (Fe3-x MnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas[J]. Chem Eng J, 2018, 334(15):216-224.
    [18] ZHANG S B, ZHAO Y C, YANG J P, ZHANG J Y, ZHENG C G. Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas[J]. Chem Eng J, 2018, 348(15):618-629.
    [19] SHEN B X, WANG Y Y, WANG F M, LIU T. The effect of Ce-Zr on NH3-SCR activity over MnOx (0.6)/Ce0.5Zr0.5O2 at low temperature[J]. Chem Eng J, 2014, 236(2):171-180. http://www.sciencedirect.com/science/article/pii/S1385894713012783
    [20] XU Y L, ZHONG Q, LIU X Y. Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature[J]. J Hazard Mater, 2015, 283(11):252-259. http://www.ncbi.nlm.nih.gov/pubmed/25282177
    [21] LEE C W, SERRE S D, ZHAO Y X, LEE S J, HASTINGS T W. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions[J]. J Air Waste Manage, 2008, 58(4):484-493. doi: 10.3155/1047-3289.58.4.484
    [22] LI H L, YING L, WU C Y, ZHANG J Y. Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas[J]. Chem Eng J, 2011, 169(1):186-193. http://www.sciencedirect.com/science/article/pii/S1385894711002890
    [23] RODRIGUEZ J A, HRBEK J. Interaction of sulfur with well-defined metal and oxide surfaces:Unraveling the mysteries behind catalyst poisoning and desulfurization[J]. Accounts Chem Res, 1999, 32(9):719-728. doi: 10.1021/ar9801191
    [24] ZHANG X, SHEN B X, ZHU S W, XU H, TIAN L H. UiO-66 and its Br-modified derivates for elemental mercury removal[J].J Hazard Mater, 2016, 320(15):556-563. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1dd9a40a7a6b457343bcaa432976a72
    [25] LEE J G, JOSHI B N, SAMUEL E, AN S, SWIHART M T, LEE J S, HWANG Y K, CHANG J S, YOON S S. Supersonically sprayed gas-and water-sensing MIL-100(Fe) films[J]. J Alloy Compd, 2017, 722(25):996-1001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=095ff542beba20f29bb2dc64816f7ec4
    [26] LI Y, MURPHY P D, WU C Y, POWERS K W, BONZONGO J C. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas[J]. Environ Sci Technol, 2008, 42(14):5304-5309. doi: 10.1021/es8000272
    [27] LI H L, WU C Y, LI Y, ZHANG J Y. Superior activity of MnOx -CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Appl Catal B:Environ, 2012, s111-112(3):381-388.
    [28] XU H M, ZAN Q, ZONG C X, QUAN F Q, JIAN M, YAN N Q.Catalytic oxidation and adsorption of Hg0 over low-temperature NH3 -SCR LaMnO3 perovskite oxide from flue gas[J]. Appl Catal B:Environ, 2016, 186(5):30-40. http://www.sciencedirect.com/science/article/pii/S092633731530326X
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  36
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-26
  • 修回日期:  2018-10-30
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-01-10

目录

    /

    返回文章
    返回