留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高有机硫炼焦煤分选组分中硫的赋存形态及其热变迁行为研究

刘少林 孔娇 申岩峰 李挺 杨暖暖 王美君 常丽萍

刘少林, 孔娇, 申岩峰, 李挺, 杨暖暖, 王美君, 常丽萍. 高有机硫炼焦煤分选组分中硫的赋存形态及其热变迁行为研究[J]. 燃料化学学报(中英文), 2019, 47(8): 915-924.
引用本文: 刘少林, 孔娇, 申岩峰, 李挺, 杨暖暖, 王美君, 常丽萍. 高有机硫炼焦煤分选组分中硫的赋存形态及其热变迁行为研究[J]. 燃料化学学报(中英文), 2019, 47(8): 915-924.
LIU Shao-lin, KONG Jiao, SHEN Yan-feng, LI Ting, YANG Nuan-nuan, WANG Mei-jun, CHANG Li-pin. Sulfur occurrence and transformation during pyrolysis of the flotation fraction from coking coals with high organic sulfur[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 915-924.
Citation: LIU Shao-lin, KONG Jiao, SHEN Yan-feng, LI Ting, YANG Nuan-nuan, WANG Mei-jun, CHANG Li-pin. Sulfur occurrence and transformation during pyrolysis of the flotation fraction from coking coals with high organic sulfur[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 915-924.

高有机硫炼焦煤分选组分中硫的赋存形态及其热变迁行为研究

基金项目: 

国家自然科学基金 21878208

国家自然科学基金 21808152

山西省青年基金 201801D221361

太原理工大学青年项目 2017QN60

详细信息
  • 中图分类号: TQ530.2

Sulfur occurrence and transformation during pyrolysis of the flotation fraction from coking coals with high organic sulfur

Funds: 

National Nature Science Foundation of China 21878208

National Nature Science Foundation of China 21808152

the Shanxi Province Science Foundation for Youth 201801D221361

the Youth Fund of Taiyuan University of Technology 2017QN60

More Information
  • 摘要: 利用重介质分选法分别将两种高有机硫炼焦煤分选为密度范围不同的五个组分。采用X射线光电子能谱仪(XPS)、核磁共振波谱仪(13C NMR)和热解质谱联用技术(Py-MS)探究不同分选组分中硫的赋存形态及其热变迁行为。结果表明,不同分选组分中硫的分布、赋存形态及其所处化学环境存在显著差异。有机硫主要分布在低密度组分(D1)中,且以噻吩硫的形式存在;无机硫作为矿物质组分主要分布于高密度组分(D5)中。随着分选组分密度的增大,其脂肪碳的比例降低,芳香碳的比例增加,D1中硫醇、硫醚等硫化物的含量明显增加。热解过程中脂肪碳结构裂解生成的挥发分促进含硫气体的释放,进而提高了D1的脱硫效率,D5中硫的热变迁行为则主要受煤中矿物质的影响。
  • 图  1  热解实验装置示意图

    Figure  1  Schematic diagram of pyrolysis apparatus

    图  2  LF-RC煤的XPS光谱分峰拟合图

    Figure  2  Curves-fitting result of XPS spectra of LF raw coal

    图  3  各分选组分的硫含量和产率

    Figure  3  Sulfur content and proportion of flotation fractions with different densities

    图  4  原煤与D1、D4、D5中硫的XPS光谱谱图

    Figure  4  Curves-fitting for XPS spectra of sulfur on the surface of raw coal and flotation fractions

    图  5  原煤与D1、D4、D5中硫的XPS光谱拟合

    Figure  5  Curves-fitting results of XPS spectra of raw coal and flotation fractions

    图  6  原煤与D1、D4、D5的13C NMR谱图

    Figure  6  13C NMR spectra of raw coal and flotation fractions

    图  7  原煤与D1、D4、D5热解过程中H2S、CH4和H2逸出曲线

    Figure  7  Release curves of H2S, CH4, and H2 during pyrolysis of raw coal and flotation fractions

    图  8  原煤与D1、D4、D5热解过程中COS、CO和CO2逸出曲线

    Figure  8  Release curves of COS, CO, and CO2 during pyrolysis of raw coal and flotation fractions

    表  1  煤样的工业分析、元素分析和硫形态分析

    Table  1  Proximate, ultimate, and sulfur form analyses of coal samples

    Sample Proximate analysis wad /% Ultimate analysis wdaf/% Sulfur form wd/%
    M A V FC C H N S Oa Ss Sp So St
    LW-RC 1.03 10.27 22.48 66.31 89.19 4.89 1.51 1.94 2.47 0.18 0.16 1.40 1.74
    LW-D1 1.01 2.37 25.26 71.36 90.17 5.06 1.57 1.93 1.27 0.04 0.05 1.79 1.88
    LW-D2 0.67 5.48 23.52 70.33 90.32 4.88 1.50 1.76 1.54 0.02 0.11 1.53 1.66
    LW-D3 0.68 8.99 20.74 69.59 89.71 4.61 1.45 1.48 2.75 0.02 0.14 1.19 1.35
    LW-D4 1.04 12.50 19.10 67.36 89.64 4.66 1.43 1.46 2.81 0.07 0.11 1.09 1.27
    LW-D5 1.09 30.18 16.09 52.64 84.75 4.82 1.37 1.95 7.11 0.14 0.45 0.76 1.35
    LF-RC 0.51 7.34 30.18 61.97 85.60 5.07 1.35 4.53 3.45 0.04 0.28 3.87 4.19
    LF-D1 0.67 3.53 30.97 64.83 88.12 3.53 1.32 4.44 2.59 0.03 0.12 4.13 4.28
    LF-D2 0.41 6.52 30.04 63.03 87.61 3.92 1.34 4.34 2.79 0.04 0.25 3.77 4.06
    LF-D3 0.44 10.65 26.34 62.57 87.93 4.33 1.29 4.05 2.40 0.01 0.34 3.36 3.71
    LF-D4 0.48 14.56 22.35 62.61 88.10 4.51 1.32 3.79 2.28 0.04 0.42 2.77 3.23
    LF-D5 0.61 33.93 18.66 46.80 85.79 4.98 1.37 5.22 2.64 0.02 1.61 1.81 3.44
    note: ad: air dried basis; d: dried basis; daf: dried and ash-free basis; Ss: sulfate sulfur; Sp: pyritic sulfur; So: organic sulfur; St: total sulfur; a: by difference
    下载: 导出CSV

    表  2  13C NMR中不同类型碳对应的化学位移

    Table  2  Chemical shift for different structural carbons in solid-state 13C NMR spectra

    Assignment Chemical shift δ Characters
    Aliphatic methyl 14-22 fal3
    Aromatic methyl 22-26 fala
    Methylene 26-37 fal2
    Quaternery sp3 C 37-50 fal1, fal*
    Oxygen aliphatic carbon 50-95 falO
    Protonated aromatic carbon 95-129 faH
    Aromatic bridgehead carbon 129-137 faB
    Aliphatic substituted aromatic carbon 137-149 faS
    Oxygen aromatic carbon 149-164 faO
    Carboxyl 164-190
    Quinone and carbonyl carbon 190-220 faCC
    下载: 导出CSV

    表  3  13C NMR波谱图拟合

    Table  3  Curves-fitting results of 13C NMR spectra of raw coal and flotation fractions

    Sample /% CH2/CH3
    f3al faal f2al f1al+f*al fOal fHa fBa fSa fOa fCC1a fal fa
    LW-RC 5.54 5.20 8.43 1.31 6.65 1.25 56.04 7.70 4.19 3.34 20.48 69.18 0.79
    LW-D1 2.12 5.54 10.83 3.06 4.57 0.92 55.82 8.54 4.67 3.94 21.54 69.94 1.41
    LW-D4 5.20 4.73 7.99 2.87 3.13 1.85 59.15 8.26 4.47 3.34 20.79 72.74 0.80
    LW-D5 1.59 4.21 4.88 1.03 12.63 0.83 61.27 7.06 5.27 1.23 11.71 74.43 0.84
    LF-RC 4.09 3.29 1.10 16.11 3.26 8.44 36.24 13.48 1.99 12.00 24.59 60.15 0.15
    LF-D1 3.74 3.98 1.91 18.62 2.82 8.68 36.77 16.01 1.15 6.33 28.25 62.61 0.38
    LF-D4 1.76 8.21 1.94 14.18 3.33 12.2 40.41 14.20 0.89 2.89 26.09 67.70 0.19
    LF-D5 4.67 3.20 0.93 13.32 3.61 9.87 43.49 15.87 0.59 4.42 22.12 69.82 0.12
    下载: 导出CSV

    表  4  原煤与分选组分的半焦产率及脱硫率

    Table  4  Char yield and desulfurization rate of raw coal and flotation fractions

    Sample Char yield wd/% Desulfurization rate η/%
    LW-RC 77.44 32.33
    LW-D1 75.51 36.28
    LW-D2 77.45 36.07
    LW-D3 80.00 34.71
    LW-D4 81.40 29.84
    LW-D5 82.33 10.85
    LF-RC 71.79 40.12
    LF-D1 70.82 41.59
    LF-D2 72.42 40.84
    LF-D3 75.40 39.88
    LF-D4 77.69 39.67
    LF-D5 80.62 42.38
    下载: 导出CSV
  • [1] 武晨晓.东庞煤矿高硫煤配煤炼焦的研究与应用[J].洁净煤技术, 2013, 19(1):61-64. http://d.old.wanfangdata.com.cn/Periodical/jjmjs201301016

    WU Chen-xiao. Preparation of blended raw high-sulphur coal in Dongpang coal mine[J]. Clean Coal Technol, 2013, 19(1):61-64. http://d.old.wanfangdata.com.cn/Periodical/jjmjs201301016
    [2] 王健, 余诚桓, 吉武平.配高硫煤炼焦的研究[J].燃料与化工, 2011, 42(5):26-27. doi: 10.3969/j.issn.1001-3709.2011.05.010

    WANG Jian, YU Cheng-heng, JI Wu-pin. Preparation of blending coking high sulfur coal[J]. Fuel Chem Process, 2011, 42(5):26-27. doi: 10.3969/j.issn.1001-3709.2011.05.010
    [3] IBARRA J V, PALACIOS J M, MOLINER R, BONET A J. Evidence of reciprocal organic matter-pyrite interactions affecting sulfur removal during coal pyrolysis[J]. Fuel, 1994, 73(7):1046-1050. doi: 10.1016/0016-2361(94)90235-6
    [4] CALKINS W H. The chemical forms of sulfur in coal:A review[J]. Fuel, 1994, 73(4):475-484. doi: 10.1016/0016-2361(94)90028-0
    [5] GRYGLEWICA G, WILK P, YPERMAN J, FRANCO D V, MAES I I, MUILENS J, POUCKE L C V. Interaction of the organic matrix with pyrite during pyrolysis of a high-sulfur bituminous coal[J]. Fuel, 1996, 75(13):1499-1504. doi: 10.1016/0016-2361(96)00141-X
    [6] ZHANG D K, YANI S. Sulphur transformation during pyrolysis of an Australian lignite[J]. Proc Combust Inst, 2011, 33(2):1747-1753. doi: 10.1016/j.proci.2010.07.074
    [7] CHEN H K, LI B Q, YANG J L, ZHANG B J. Transformation of sulfur during pyrolysis and hydroprolysis of coal[J]. Fuel, 1998, 77:487-493. doi: 10.1016/S0016-2361(97)00275-5
    [8] WANG M J, LIU L J, WANG J C, CHANG L P, WANG H, HU Y F. Sulfur K-edge XANES study of sulfur transformation during pyrolysis of four coals with different ranks[J]. Fuel Process Technol, 2015, 131:262-269. doi: 10.1016/j.fuproc.2014.10.038
    [9] WANG M J, JIA T H, WANG J C, HU Y F, LIU F R, WANG H, CHANG L P. Changes of sulfur forms in coal after tetrachloroethylene extraction and theirs transformations during pyrolysis[J]. Fuel, 2016, 186:726-733. doi: 10.1016/j.fuel.2016.09.007
    [10] 陈皓侃, 李保庆, 张碧江.矿物质对煤热解和加氢热解含硫气体生成的影响[J].燃料化学学报, 1999, 27(S1):5-10. http://cdmd.cnki.com.cn/Article/CDMD-10141-2006021579.htm

    CHEN Hao-kan, LI Bao-qing, ZHANG Bi-jiang. effects of mineral matter on evolution of sulfur - containing gases in pyrolysis and hydropyrolysis[J]. J Fuel Chem Technol, 1999, 27(S1):5-10. http://cdmd.cnki.com.cn/Article/CDMD-10141-2006021579.htm
    [11] 周仕学, 聂西文, 王荣春, 刘泽常.高硫强粘结性煤与生物质共热解的研究[J].燃料化学学报, 2000, 28(4):294-297. doi: 10.3969/j.issn.0253-2409.2000.04.002

    ZHOU Shi-xue, NIE Xi-wen, WANG Ron-chun, LIU Ze-chang. Study on co-pyrolysis of high sulfur and strongly caking coal with biomass[J]. J Fuel Chem Technol, 2000, 28(4):294-297. doi: 10.3969/j.issn.0253-2409.2000.04.002
    [12] 康西栋, 胡善亭, 潘治贵, 潘银苗, 王凌志.煤的显微煤岩学特征与焦炭强度的关系[J].现代地质, 1997, 11(2):164-169. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ702.005.htm

    KANG Xi-dong, HU Shan-ting, PANG Zhi-gui, PAN Yin-miao, WANG Ling-zhi. Study on relationship between microscopic coal petrology and coke intensity[J]. Geosci, 1997, 11(2):164-169. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ702.005.htm
    [13] 周师庸, 赵俊国.炼焦煤性质与高炉焦炭质量[M].北京:冶金工业出版社, 2005.

    ZHOU Shi-yon, ZHAO Jun-guo. Properties of Coking Coal and Quality of Coke for the Blast Furnace[M]. Beijing:Metallurgical Industry Press, 2005.
    [14] ZHANG L, LIU W L, MEN D P. Preparation and coking properties of coal maceral concentrates[J]. Int J Min Sci Technol, 2014, 24(1):93-98. doi: 10.1016/j.ijmst.2013.12.016
    [15] TSENG B H, BUCKENTIN M, HSIEH K C. Organic sulphur in coal macerals[J]. Fuel, 1986, 5(3):385-389. http://cn.bing.com/academic/profile?id=5d78ea62ef9053cfd863459c5ef4a910&encoded=0&v=paper_preview&mkt=zh-cn
    [16] DEMIR I, HARVEY R D. Variation of organic sulfur in macerals of selected Illinois Basin coals[J]. Org Geochem, 1991, 7(4):525-533. http://cn.bing.com/academic/profile?id=04019c85b2feee1ef734fac46929a549&encoded=0&v=paper_preview&mkt=zh-cn
    [17] 雷加锦, 任德贻, 韩德馨, 唐修义.不同沉积环境成因煤显微组分的有机硫分布[J].煤田地质与勘探, 1995, 3(5):14-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500724050

    LEI Jia-jin, REN De-yi, HAN De-xin, TANG Xiu-yi. The distribution of organic sulfur in macerals of coals accumulated in different environments[J]. Coal Geol Explor, 1995, 3(5):14-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500724050
    [18] 孙庆雷, 李文, 陈皓侃, 李宝庆.煤显微组分热解过程中含硫气体逸出特性[J].中国矿业大学学报, 2005, 4(4):518-522. doi: 10.3321/j.issn:1000-1964.2005.04.024

    SUN Qing-lei, LI Wen, CHEN Hao-kan, LI Bao-qing. Characteristic of sulfur-containing gases released from the pyrolysis of coal macerals[J]. J China Univ Min Technol, 2005, 4(4):518-522. doi: 10.3321/j.issn:1000-1964.2005.04.024
    [19] 陈鹏.用XPS研究兖州煤各显微组分中有机硫存在形态[J].燃料化学学报, 1997, 5(3):238-241. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX703.008.htm

    CHEN Peng. Application of XPS in study forms of organic sulfur in macerals of Yanzhou coal[J]. J Fuel Chem Technol, 1997, 5(3):238-241. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX703.008.htm
    [20] LI C L, YANG S S, CHEN X J, LIN X C, WANG Y G. The characteristic of Shengli brown coal fractions from heavy medium separation and its influence on CO2 gasification[J]. Fuel Process Technol, 2017, 155:232-237. doi: 10.1016/j.fuproc.2016.06.041
    [21] LIN X C, LUO M, LI S Y, YANG Y P, CHEN X J, B, WANG Y G. The evolutionary route of coal matrix during integrated cascade pyrolysis of a typical low-rank coal[J]. Appl Energy, 2017, 199:335-346. doi: 10.1016/j.apenergy.2017.05.040
    [22] QUEROL X, CABRERA L, PICKEL W, LÓPEZ-SOLER A, HAGEMANN H W, FERNÁNDEZ-TURIEL J L. Geological controls on the coal quality of the Mequinenza subbituminous coal deposit, northeast Spain[J]. Int J Coal Geol, 1996, 29(1):67-91. http://cn.bing.com/academic/profile?id=595ef45a79633ac092326ba898393744&encoded=0&v=paper_preview&mkt=zh-cn
    [23] 葛涛, 蔡川川.不同密度炼焦煤中有机硫的XPS研究[J].安徽理工大学学报, 2015, 35(3):14-16. doi: 10.3969/j.issn.1672-1098.2015.03.005

    GE Tao, CAI Chuan-chuan. The XPS analysis of different density level organic sulfur in coking coal[J]. J Anhui Univ Sci Technol, 2015, 35(3):14-16. doi: 10.3969/j.issn.1672-1098.2015.03.005
    [24] 么秋香, 杜美利, 王水利, 刘静, 杨建利.高硫煤中硫的赋存形态及其可选性评价[J].煤炭转化, 2013, 36(1):24-27. doi: 10.3969/j.issn.1004-4248.2013.01.006

    YAO Qiu-xiang, DU Mei-li, WANG Shui-li, LIU Jing, YANG Jian-li. Modes of occurrence and washability evaluation of sulfur in high sulfur coal[J]. Coal Convers, 2013, 36(1):24-27. doi: 10.3969/j.issn.1004-4248.2013.01.006
    [25] LIU F R, LI W, CHEN H K, LI B Q. Uneven distribution of sulfurs and their transformation during coal pyrolysis[J]. Fuel, 2007, 86(3):360-366. doi: 10.1016/j.fuel.2006.07.021
    [26] KOZLOWSKI M. XPS Study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3):259-265. doi: 10.1016/j.fuel.2003.08.004
    [27] 马玲玲, 秦志宏, 张露, 刘旭, 陈航.煤有机硫分析中XPS分峰拟合方法及参数设置[J].燃料化学学报, 2014, 42(3):277-283. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18367.shtml

    MA Ling-ling, QIN Zhi-hong, ZHANG Lu, LIU Xu, CHEN Hang. Peak fitting methods and parameter settings in XPS analysis for organic sulfur in coal[J]. J Fuel Chem Technol, 2014, 42(3):277-283. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18367.shtml
    [28] HOU J L, MA Y, LI S Y, SHI J, HE L, LI J. Transformation of sulfur and nitrogen during Shenmu coal pyrolysis[J] Fuel, 2018, 231:134-144. doi: 10.1016/j.fuel.2018.05.046
    [29] LIU P, LE J W, WANG L L, PAN T Y, LU X L, ZHANG D X. Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis[J]. Appl Energy, 2016, 183:470-477. doi: 10.1016/j.apenergy.2016.08.166
    [30] WANG M J, HU Y F, WANG J C, CHANG L P, WANG H. Transformation of sulfur during pyrolysis of inertinite-rich coals and correlation with their characteristics[J]. J Anal Appl Pyrolysis, 2013, 104:585-592. doi: 10.1016/j.jaap.2013.05.010
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  50
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-20
  • 修回日期:  2019-05-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-08-10

目录

    /

    返回文章
    返回