留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Production of liquid bio-fuel from catalytic de-oxygenation: Pyrolysis of beech wood and flax shives

Mohabeer Chetna Reyes Luis Abdelouahed Lokmane Marcotte Stéphane Buvat Jean-Christophe Tidahy Lucette Abi-Aad Edmond Taouk Bechara

Mohabeer Chetna, Reyes Luis, Abdelouahed Lokmane, Marcotte Stéphane, Buvat Jean-Christophe, Tidahy Lucette, Abi-Aad Edmond, Taouk Bechara. Production of liquid bio-fuel from catalytic de-oxygenation: Pyrolysis of beech wood and flax shives[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 153-166.
Citation: Mohabeer Chetna, Reyes Luis, Abdelouahed Lokmane, Marcotte Stéphane, Buvat Jean-Christophe, Tidahy Lucette, Abi-Aad Edmond, Taouk Bechara. Production of liquid bio-fuel from catalytic de-oxygenation: Pyrolysis of beech wood and flax shives[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 153-166.

详细信息
  • 中图分类号: O643

Production of liquid bio-fuel from catalytic de-oxygenation: Pyrolysis of beech wood and flax shives

Funds: The project was supported by the European Union with the European Regional Development Fund (ERDF) and the Regional Council of Normandie
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1  Layout of pyrolysis reactor

    Figure  2  Mass balances for flax shives pyrolysis at different pyrolytic temperatures

    Figure  3  N2 adsorption/desorption isotherms of catalysts and supports

    (a): HZSM-5; (b): Fe-HZSM-5; (c): H-Y; (d): γ-Al2O3

    Figure  4  FT-IR spectra of catalysts

    Figure  5  Effect of quantity of catalyst used on global oxygen percentage of flax shive bio-oil

    Figure  6  Oxygen content of bio-oil samples obtained with and without catalytic treatment

    Figure  7  Liquid product distributions for (a) beech wood and (b) flax shives with and without catalytic treatment

    Figure  8  Effect of catalysts on (a) carboxylic acids, (b) phenols and (c) ketones

    Figure  9  Effect of catalysts on aromatic compounds

    Figure  10  Evolution of CO, CO2, H2 and CH4 with and without catalytic treatment for (a) beech wood and (b) flax shives

    Table  1  Ultimate analysis of the biomasses

    Biomass Ultimate analysis w/%
    carbon hydrogen nitrogen oxygen
    Flax shives (FS) 45.70 5.77 0.41 48.12
    Beech wood (BW) 47.38 6.11 < 0.01 46.51
    下载: 导出CSV

    Table  2  Proximate analysis of biomasses based on TGA experiments

    Biomass Proximate analysis w/%
    M V FC A
    Flax shives (FS) 2.78 74.72 19.97 2.53
    Beech wood (BW) 5.70 75.93 17.52 0.85
    下载: 导出CSV

    Table  3  Specific surface areas and specific pore volumes of catalysts used

    Catalyst used HZSM-5 Fe-HZSM-5 H-Y Fe-H-Y Al2O3 Pt/Al2O3 CoMo/Al2O3
    Specific surface area A/(m2·g-1) 285.7 220.8 763.3 457.7 179.6 30.7 33.3
    Specific pore volume v/(cm3·g-1) 0.41 0.25 0.48 - 0.22 - -
    下载: 导出CSV

    Table  4  Parameters for experimental runs concerning effect of catalyst-to-biomass ratio used

    Mass of Fe-HZSM-5 used m/g Height of Fe-HZSM-5 bed/cm Volume of catalytic zone without presence of catalyst v/cm3 Catalyst-to-biomass ratio used Contact t/s
    6 2.5 26.55 2: 1 1.94
    12 5.0 53.09 4: 1 3.89
    28 10.0 106.19 9: 1 7.77
    下载: 导出CSV

    Table  5  Evolution of percentage of chemical families present in bio-oil from flax shives samples with different catalyst-to-biomass ratios

    Chemical family present in bio-oil Bio-oil samples w/%
    catalyst : biomass ratio
    0 2 4 9
    Carboxylic acids 34.41 18.79 - -
    Alkanes 1.86 1.29 - -
    Aromatics 4.95 6.00 10.30 17.00
    Alcohols 10.18 5.82 - -
    Aldehydes 3.07 1.78 3.26 7.36
    Amides 15.13 - - -
    Ketones 6.93 11.73 12.44 20.96
    Esters 9.57 4.03 - -
    Furans 0.70 1.74 - -
    Guaiacols 1.20 2.18 13.26 10.72
    Phenols 8.31 46.65 60.74 43.96
    Carbohydrates 3.68 - - -
    下载: 导出CSV

    Table  6  Percentages of chemical families present in bio-oil samples with and without catalytic treatment

    Percentage wmol/%
    beech wood bio-oils flax shive bio-oils
    no catalyst HZSM-5 Fe-HZSM-5 H-Y Fe-H-Y Pt/
    Al2O3
    CoMo/
    Al2O3
    no catalyst HZSM-5 Fe-HZSM-5 H-Y Fe-H-Y Pt/
    Al2O3
    CoMo/
    Al2O3
    Carboxylic acids 36.36 7.50 - 19.83 13.99 23.52 35.31 37.26 - - 30.78 7.83 33.62 36.25
    Alkanes 0.85 - - - - 2.91 2.19 2.01 - - - - 2.51 1.38
    Aromatics 4.83 13.28 8.97 8.07 4.89 7.77 5.18 4.54 12.15 10.51 7.11 5.26 5.19 4.13
    Alcohols 7.36 7.47 5.09 8.61 5.83 12.28 8.88 11.02 9.27 5.79 9.25 5.37 13.52 7.29
    Aldehydes 3.62 1.75 1.04 1.87 1.31 4.29 1.81 3.33 0.57 0.82 1.46 2.44 1.84 0.43
    Amides 3.92 3.82 - 5.30 2.27 2.36 1.25 3.48 3.22 1.36 3.74 2.24 2.09 0.50
    Ketones 10.26 6.21 7.30 5.29 3.79 9.69 10.37 8.53 5.35 9.04 3.84 3.52 15.26 14.53
    Esters 9.58 5.42 - 11.41 3.53 10.83 5.17 10.85 1.49 - 11.35 1.89 6.55 3.87
    Furans 2.16 4.56 3.99 3.08 2.74 1.03 2.19 0.76 3.04 5.64 2.65 2.54 1.18 1.89
    Guaiacols 1.34 3.06 2.07 4.10 1.44 0.91 0.88 1.30 1.05 1.66 3.21 1.39 - 1.06
    Phenols 14.46 46.92 71.53 32.43 60.22 16.96 22.05 12.92 63.86 65.18 26.62 67.54 12.54 23.86
    Carbohydrates 5.26 - - - - 7.45 4.72 3.99 - - - - 5.70 4.80
    下载: 导出CSV

    Table  7  Percentages of gaseous components present in non-condensable gas samples with and without catalytic treatment

    Percentage φ/%
    beech wood non-condensable gases flax shive non-condensable gases
    no catalyst HZSM-5 Fe-HZSM-5 Pt/
    Al2O3
    CoMo/
    Al2O3
    H-Y Fe-H-Y no catalyst HZSM-5 Fe-HZSM-5 Pt/
    Al2O3
    CoMo/
    Al2O3
    H-Y Fe-H-Y
    H2 1.04 0.93 15.28 36.23 6.97 1.13 10.10 1.30 1.35 13.77 31.91 6.91 1.42 10.03
    CO 44.61 49.60 28.61 24.67 42.22 52.38 35.52 35.39 42.34 25.83 25.41 33.46 42.87 28.38
    CO2 39.99 32.36 38.61 29.73 37.08 28.67 34.46 50.18 35.79 43.41 32.10 44.91 38.79 41.59
    CH4 11.38 5.26 6.18 8.49 11.04 11.87 14.78 10.51 7.29 6.31 8.34 10.24 11.50 14.17
    C2H4 1.64 6.66 5.10 0.39 1.47 3.04 2.31 1.40 6.81 4.92 0.66 1.43 2.86 2.13
    C2H6 1.13 0.46 1.46 0.48 0.83 1.09 0.94 1.20 0.85 0.65 0.66 1.05 1.40 1.11
    C3H6 - 4.73 4.74 - 0.04 1.81 1.88 - 5.56 4.81 0.64 1.36 0.64 1.80
    下载: 导出CSV

    Table  8  Water content of bio-oil samples

    Biomass Catalyst used Water content w/% Standard error /%
    Beech wood no catalyst 2.39 0.14
    HZSM-5 6.06 0.06
    Fe-HZSM-5 5.45 0.10
    H-Y 3.81 0.05
    Fe-H-Y 2.63 0.26
    Pt/Al2O3 3.33 0.01
    CoMo/Al2O3 4.65 0.33
    Flax shive no catalyst 1.23 0.04
    HZSM-5 5.45 0.23
    Fe-HZSM-5 5.08 0.07
    H-Y 3.92 0.08
    Fe-H-Y 2.73 0.18
    Pt/Al2O3 1.86 0.01
    CoMo/Al2O3 3.76 0.29
    下载: 导出CSV

    Table  9  Conversion and production rates of chemical families present in bio-oil samples obtained with and without catalyst use

    Chemical families Conversion ("-" sign) and production ("+" sign) rate /%
    beech wood bio-oil flax shive bio-oil
    HZSM-5 Fe-HZSM-5 H-Y Fe-H-Y Pt/
    Al2O3
    CoMo/
    Al2O3
    HZSM-5 Fe-HZSM-5 H-Y Fe-H-Y Pt/
    Al2O3
    CoMo/
    Al2O3
    Carboxylic acids -84 -100 -69 -84 -53 -60 -100 -100 -55 -83 -53 -67
    Alkanes -100 -100 -100 -100 +37 +223 -100 -100 -100 -100 +40 +291
    Aromatics +372 +23 +159 +4 +217 +74 +133 +30 +60 +11 +122 +27
    Alcohols -27 -83 -39 -70 +11 +48 N.C. -70 +1 -61 +37 +83
    Aldehydes -65 -93 -73 -86 -20 -93 -80 -86 -47 -41 -38 +113
    Amides -71 -100 -48 -95 -46 -29 -67 -95 -39 -89 -67 -98
    Ketones -45 -78 -66 -82 -33 -65 -15 -31 -38 -62 +128 +60
    Esters -61 -100 -40 -86 -31 -4 -83 -100 -46 -85 -29 +19
    Furans +322 +27 +107 +35 -11 -329 +374 +324 +319 +168 +73 +734
    Guaiacols +82 -58 +76 -55 -50 +168 -3 -27 +199 -14 -100 +289
    Phenols +267 +92 +65 +151 +4 -24 +766 +305 +257 +505 +56 N.C.
    Carbohydrates -100 -100 -100 -100 -20 -92 -100 -100 -100 -100 -41 -46
    conversion ratio = (moles obtained without de-oxygenation-moles obtained after de-oxygenation)/moles obtained without de-oxygenation × 100%
    N.C.: no change (same as amount present in non-catalytic sample)
    下载: 导出CSV

    Table  10  Conversion and production rates of non-condensable gas (NCG) components obtained with and without catalyst use

    NCG component Conversion ("-" sign) and production ("+" sign) rate /%
    beech wood NCG flax shives NCG
    HZSM-5 Fe-HZSM-5 H-Y Fe-H-Y Pt/
    Al2O3
    CoMo/
    Al2O3
    HZSM-5 Fe-HZSM-5 H-Y Fe-H-Y Pt/
    Al2O3
    CoMo/
    Al2O3
    H2 +67 +4511 +116 +2565 +13960 +1173 +101 +2774 +79 +1837 +8199 +886
    CO +109 +101 +132 +118 +123 +79 +131 +97 +98 +101 +142 +75
    CO2 +52 +202 +42 +136 +199 +76 +38 +134 +26 +107 +116 +65
    CH4 -13 +70 +106 +256 +200 +84 +34 +62 +79 +237 +168 +80
    C2H2 -100 -100 -100 -100 -100 -100 N.C. N.C. N.C. Prod. N.C. Prod.
    C2H4 +662 +874 +266 +286 -4 +70 +839 +849 +234 +280 +59 +88
    C2H6 -23 +307 +92 +129 +71 +40 +37 +46 +90 +132 +85 +63
    C3H4 Prod. N.C. Prod. Prod. Prod. Prod. -17 -19 +254 +2 +2 +121
    C3H6 Prod. Prod. Prod. Prod. N.C. Prod. Prod. Prod. Prod. Prod. Prod. Prod.
    C3H8 N.C. N.C. N.C. N.C. N.C. Prod. N.C. Prod. Prod. Prod. Prod. Prod.
    conversion ratio = (moles obtained without de-oxygenation-moles obtained after de-oxygenation)/moles obtained without de-oxygenation × 100%
    Prod.: production (produced because of the catalytic treatment, not present in non-catalytic sample);
    N.C.: no change (same as amount present in non-catalytic sample)
    下载: 导出CSV
  • [1] Energetics Inc. Energy and Environmental Profile of the U.S[Z]. Chemical Industry. U.S. Department of Energy, Office of Industrial Technologies, 2000.
    [2] CHENG S, WEI L, ZHAO X, JULSON J. Application, deactivation, and regeneration of heterogeneous catalysts in bio-oil upgrading[J]. Catalysts, 2016, 6(12):195. doi: 10.3390/catal6120195
    [3] GUDA V, TOGHIANI H. Catalytic upgrading of pinewood fast pyrolysis vapors using an integrated Auger-packed bed reactor system:Effects of acid catalysts on yields and distribution of pyrolysis products[J]. J Prod Ind, 2015, 4(2):33-43.
    [4] FRENCH R, CZERNIK S. Catalytic pyrolysis of biomass for biofuels production[J]. Fuel Process Technol, 2010, 91(1):25-32. http://www.sciencedirect.com/science/article/pii/S0378382009002392
    [5] GAYUBO A G, AGUAYO A T, ATUTXA A, AGUADO R, BILBAO J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols[J]. Ind Eng Chem Res, 2004, 43(11):2610-2618. doi: 10.1021/ie030791o
    [6] GUNAWARDENA D A, FERNANDO S D. Methods and applications of deoxygenation for the conversion of biomass to petrochemical products[C]//Biomass Now-Cultivation and Utilization. 2013.
    [7] ARENAMNART S, TRAKARNPRUK W. Ethanol conversion to ethylene using metal-mordenite catalysts[J]. Int J Appl Sci Eng, 2006, 4(1):21-32.
    [8] CHENG Y-T, JAE J, SHI J, FAN W, HUBER G W. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angew Chem, 2012, 124(6):1416-1419. doi: 10.1002/ange.201107390
    [9] LI P, LI D, YANG H, WANG X, CHEN H. Effects of Fe-, Zr-, and Co-modified zeolites and pretreatments on catalytic upgrading of biomass fast pyrolysis vapors[J]. Energy Fuels, 2016, 30(4):3004-3013. doi: 10.1021/acs.energyfuels.5b02894
    [10] MULLEN C A, BOATENG A A. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-modified HZSM-5 zeolites[J]. ACS Sustainable Chem Eng, 2015, 3(7):1623-1631. doi: 10.1021/acssuschemeng.5b00335
    [11] SUN L, ZHANG X, CHEN L, ZHAO B, YANG S, XIE X. Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts[J]. J Anal Appl Pyrolysis, 2016, 121(Supplement C):342-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d9f0c7f1058285db99d90bb8d79565c
    [12] MORTENSEN P M, GRUNWALDT J-D, JENSEN P A, KNUDSEN K G, JENSEN A D. A review of catalytic upgrading of bio-oil to engine fuels[J]. Appl Catal A:Gen, 2011, 407(1/2):1-19. https://www.sciencedirect.com/science/article/pii/S0926860X11005138
    [13] PAYORMHORM J, KANGVANSAICHOL K, REUBROYCHAROEN P, KUCHONTHARA P, HINCHIRANAN N. Pt/Al2O3-catalytic deoxygenation for upgrading of Leucaena leucocephala-pyrolysis oil[J]. Bioresour Technol, 2013, 139:128-135. doi: 10.1016/j.biortech.2013.04.023
    [14] ZHANG J, WANG K, NOLTE M W, CHOI Y S, BROWN R C, SHANKS B H. Catalytic deoxygenation of bio-oil model compounds over acid-base bifunctional catalysts[J]. ACS Catal, 2016, 6(4):2608-2621. doi: 10.1021/acscatal.6b00245
    [15] MOHABEER C, ABDELOUAHED L, MARCOTTE S, TAOUK B. Comparative analysis of pyrolytic liquid products of beech wood, flax shives and woody biomass components[J]. J Anal Appl Pyrolysis, 2017, 127:269-277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f10dc0e1f0d3b42902b36a5dd5e9d7d
    [16] GARCÍA J R, BERTERO M, FALCO M, SEDRAN U. Catalytic cracking of bio-oils improved by the formation of mesopores by means of Y zeolite desilication[J]. Appl Catal A:Gen, 2015, 503:1-8. doi: 10.1016/j.apcata.2014.11.005
    [17] AHO A, KUMAR N, LASHKUL A V, ERÄNEN K, ZIOLEK M, DECYK P, SALMI T, HOLMBOM B, HUPA M, MURZIN Y D. Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor[J]. Fuel, 2010, 89(8):1992-2000. doi: 10.1016/j.fuel.2010.02.009
    [18] DUMEIGNIL F, SATO K, IMAMURA M, MATSUBAYASHI N, PAYEN E, SHIMADA H. Characterization and hydrodesulfurization activity of CoMo catalysts supported on sol-gel prepared Al2O3[J]. Appl Catal A:Gen, 2005, 287(1):135-145. doi: 10.1016/j.apcata.2005.03.034
    [19] DEKA R C. Acidity in zeolites and their characterization by different spectroscopic methods[J]. Indian J Chem Technol, 1998, 5:109-123.
    [20] TOPALOǦLU Y D, BILGIÇ C. Determining the surface acidic properties of solid catalysts by amine titration using Hammett indicators and FTIR-pyridine adsorption methods[J]. Surf Interface Anal, 2010, 42(6/7):959-962. https://www.mendeley.com/catalogue/determining-surface-acidic-properties-solid-catalysts-amine-titration-using-hammett-indicators-ftirp/
    [21] LI H, YAN Y, REN Z. Online upgrading of organic vapors from the fast pyrolysis of biomass[J]. J Fuel Chem Technol, 2008, 36(6):666-671. doi: 10.1016/S1872-5813(09)60002-5
    [22] HORNUNG A. Intermediate Pyrolysis as an Alternative to Fast Pyrolysis[C]//Bioenergy Iv: Innovations in Biomass Conversion for Heat, Power, Fuels & Chemicals. 2014. http://dc.engconfintl.org/bioenergy_iv/2/
    [23] MAHMOOD A S N, BRAMMER J G, HORNUNG A, STEELE A, POULSTON S. The intermediate pyrolysis and catalytic steam reforming of Brewers spent grain[J]. J Anal Appl Pyrolysis, 2013, 103:328-342. doi: 10.1016/j.jaap.2012.09.009
    [24] TORRI I D, PAASIKALLIO V, FACCINI C S, HUFF R, CARAMÃO E B, SACON V, OASMAA A, ZINI C A. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization[J]. Bioresour Technol, 2016, 200:680-690. doi: 10.1016/j.biortech.2015.10.086
    [25] KEBELMANN K, HORNUNG A, KARSTEN U, GRIFFITHS G. Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components[J]. Biomass Bioenergy, 2013, 49:38-48. doi: 10.1016/j.biombioe.2012.12.006
    [26] GARCÍA R, PIZARRO C, LAVÍN A G, BUENO J L. Biomass proximate analysis using thermogravimetry[J]. Bioresour Technol, 2013, 139:1-4. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230160843/
    [27] CHARON N, PONTHUS J, ESPINAT D, BROUST F. Multi-technique characterization of fast pyrolysis oils[J]. J Anal Appl Pyrolysis, 2015, 116:18-26. doi: 10.1016/j.jaap.2015.10.012
    [28] JANNOT Y. Isothermes de sorption: Modèles et détermination[Z]. 2008.
    [29] WARD J W. Thermal decomposition of ammonium Y zeolite[J]. J Catal, 1970, 18(3):348-351. doi: 10.1016-0021-9517(70)90331-3/
    [30] LOBREE L J, HWANG I-C, REIMER J A, BELL A T. Investigations of the state of Fe in H-ZSM-5[J]. J Catal, 1999, 186(2):242-253. https://www.sciencedirect.com/science/article/pii/S0021951799925484
    [31] NAQVI S R, UEMURA Y, YUSUP S, SUGIUR Y, NISHIYAMA N, NAQVI M. The role of zeolite structure and acidity in catalytic deoxygenation of biomass pyrolysis vapors[J]. Energy Procedia, 2015, 75:793-800. doi: 10.1016/j.egypro.2015.07.126
    [32] PUÉRTOLAS B, KELLER T C, MITCHELL S, PÉREZ-RAMÍREZ J. Deoxygenation of bio-oil over solid base catalysts:From model to realistic feeds[J]. Appl Catal B:Environ, 2016, 184:77-86.
    [33] GARCIA L, SALVADOR M L, ARAUZO J, BILBAO R. Influence of catalyst weight/biomass flow rate ratio on gas production in the catalytic pyrolysis of pine sawdust at low temperatures[J]. Ind Eng Chem Res, 1998, 37:3812-3819.
    [34] IMRAN A A, BRAMER E A, SESHAN K, BREM G. Catalytic flash pyrolysis of biomass using different types of zeolite and online vapor fractionation[J]. Energies, 2016, 9(3):187. doi: 10.3390/en9030187
    [35] WANG C, HAO Q, LU D, JIA Q, LI G, XU B. Production of light aromatic hydrocarbons from biomass by catalytic pyrolysis[J]. Chin J Catal, 2008, 29(9):907-912. doi: 10.1016/S1872-2067(08)60073-X
    [36] YOO M L, PARK Y H, PARK Y-K, PARK S H. Catalytic pyrolysis of wild reed over a zeolite-based waste catalyst[J]. Energies, 2016, 9(3):201. doi: 10.3390/en9030201
    [37] MUKARAKATE C, MCBRAYER J D, EVANS T, BUDHI S. Catalytic fast pyrolysis of biomass:the reactions of water and aromatic intermediates produces phenols[J]. Green Chem, 2015, 17(8):4217-4227. http://www.chemie.de/fachpublikationen/817857/catalytic-fast-pyrolysis-of-biomass-the-reactions-of-water-and-aromatic-intermediates-produces-phenols.html
    [38] GAYUBO A G, AGUAYO A T, ATUTXA A, AGUADO R, OLAZAR M, BILBAO J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 Zeolite. Ⅱ. Aldehydes, ketones, and acids[J]. Ind Eng Chem Res, 2004, 43(11):2619-2626. https://www.mendeley.com/catalogue/transformation-oxygenate-components-biomass-pyrolysis-oil-hzsm5-zeolite-ii-aldehydes-ketones-acids/
    [39] GUO Z, WANG S, ZHU Y, LUO Z, CEN K. Separation of acid compounds for refining biomass pyrolysis oil[J]. J Fuel Chem Technol, 2009, 37(1):49-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb200901009
    [40] YANG H, YAO J, CHEN G, MA W, YAN B, QI Y. Overview of upgrading of pyrolysis oil of biomass[J]. Energy Procedia, 2014, 61:1306-1309. doi: 10.1016/j.egypro.2014.11.1087
    [41] YANG H, YAN R, CHEN H, LEE D H, ZHENG C. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12):1781-1788. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3fa85712db16f40b571417e71fe15255
    [42] CHANTAL P, KALIAGUINE S, GRANDMAISON J L, MAHAY A. Production of hydrocarbons from aspen poplar pyrolytic oils over H-ZSM5[J]. Appl Catal, 1984, 10(3):317-332. doi: 10.1016/0166-9834(84)80127-X
  • 加载中
图(11) / 表(10)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  31
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-25
  • 修回日期:  2019-01-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-02-10

目录

    /

    返回文章
    返回