留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde

YE Yu-ling FU Meng-qian CHEN Hong-lin ZHANG Xiao-ming

叶宇玲, 付梦倩, 陈洪林, 张小明. ZSM-5分子筛酸性质对甲醛合成三聚甲醛催化性能的影响[J]. 燃料化学学报(中英文), 2020, 48(3): 311-320.
引用本文: 叶宇玲, 付梦倩, 陈洪林, 张小明. ZSM-5分子筛酸性质对甲醛合成三聚甲醛催化性能的影响[J]. 燃料化学学报(中英文), 2020, 48(3): 311-320.
YE Yu-ling, FU Meng-qian, CHEN Hong-lin, ZHANG Xiao-ming. Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 311-320.
Citation: YE Yu-ling, FU Meng-qian, CHEN Hong-lin, ZHANG Xiao-ming. Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 311-320.

ZSM-5分子筛酸性质对甲醛合成三聚甲醛催化性能的影响

基金项目: 

The project was supported by the National Key R & D Program of China 2018YFB0604902

详细信息
  • 中图分类号: TQ215

Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde

Funds: 

The project was supported by the National Key R & D Program of China 2018YFB0604902

More Information
  • 摘要: ZSM-5分子筛是合成三聚甲醛的有效催化剂。本工作通过XRF、XRD、SEM、NH3-TPD、Py-FTIR和27Al MAS NMR等手段对一系列不同SiO2/Al2O3物质的量比的ZSM-5分子筛催化剂进行了表征,研究了ZSM-5分子筛中Brønsted酸中心和Lewis酸中心对其甲醛合成三聚甲醛催化性能的影响。结果表明,SiO2/Al2O3物质的量比为250的ZSM-5分子筛具有合适的Brønsted酸中心用于催化甲醛缩聚为三聚甲醛的反应,同时其Lewis酸中心量极少,可有效抑制Cannizzaro或Tishchenko等副反应,提高三聚甲醛的选择性,因而具有最佳的合成三聚甲醛催化性能。寿命实验评价结果显示,SiO2/Al2O3物质的量比为250的ZSM-5分子筛具有良好的催化稳定性,单程寿命长达114 h,并且可通过550℃焙烧再生恢复其催化活性。
  • Figure  1  XRD patterns of ZSM-5 zeolites with different SiO2/Al2O3 molar ratios

    Figure  2  SEM images of ZSM-5 zeolites with different SiO2/Al2O3 molar ratios

    Figure  3  NH3-TPD profiles of various ZSM-5 zeolites and γ-Al2O3

    Figure  4  Py-FTIR spectra of various ZSM-5 zeolites and γ-Al2O3

    Figure  5  27Al MAS NMR spectra of the ZSM-5 zeolites with different SiO2/Al2O3 molar ratios

    Figure  6  Formaldehyde conversions and product selectivity for TOX synthesis over different catalysts the reactions were carried out under 100 ℃ for 2 h, with 100 g CH2O solution (60%) and 5 g catalyst

    --○--: conversion; : DMM; : MF; : HCOOH; : MeOH; : TOX

    Figure  7  Formaldehyde conversions and product selectivity for TOX synthesis over the yAl-ZSM-5-100 zeolites the reactions were carried out under 100 ℃ for 2 h, with 100 g CH2O solution (60%) and 5 g catalyst

    --○--: conversion; : DMM; : MF; : HCOOH; : MeOH; : TOX

    Figure  8  Conversion of HCOOH in the esterification of MeOH and HCOOH over various catalysts the reactions were carried out at 100 ℃ for 1 h, with 100 g reaction mixture solution and 5 g solid catalyst (or 2 g H2SO4)

    Figure  9  Formaldehyde conversions and product selectivity for TOX synthesis over the ZSM-5-250 zeolite catalyst under continuous operation at 100 ℃, with 100 g CH2O (60%) and 5 g catalyst initially in the reactor and CH2O solution feed flow rate of 0.5-1.0 mL/min during the continuous reaction

    Figure  10  TG-MS curves of the spent ZSM-5-250 catalyst after continuous reaction test

    Table  1  Al content and textural properties of various ZSM-5 zeolites and γ-Al2O3 and resin

    Catalyst Al content /(mmol·g-1) ABET /(m2·g-1) vtotal /(cm3·g-1) d /nm
    Resin - 13 0.130 19.27
    γ-Al2O3 - 206 0.540 5.23
    ZSM-5-30 0.870 332 0.233 0.569
    ZSM-5-100 0.295 351 0.244 0.558
    ZSM-5-180 0.168 339 0.227 0.525
    ZSM-5-250 0.126 339 0.230 0.559
    ZSM-5-400 0.084 342 0.238 0.560
    0.1Al-ZSM-5-100 0.306 347 0.241 0.553
    0.3Al-ZSM-5-100 0.314 340 0.238 0.550
    0.5Al-ZSM-5-100 0.323 338 0.237 0.551
    note: Al content was measured by XRF, the surface area (ABET) was determined from nitrogen sorption isotherms by BET method; the total pore volume (vtotal) was obtained at a relative pressure of 0.99; the average pore diameter (D) was derived by using BJH method for resin and γ-Al2O3 and using t-plot method for the ZSM-5 zeolites
    下载: 导出CSV

    Table  2  Acidity and Al content of various ZSM-5 zeolites and γ-Al2O3 and resin

    Catalyst Acidity by NH3-TPD
    /(mmol·g-1)
    Acidity by Py-FTIR /(mmol·g-1) Al content /%
    Brønsted Lewis AlF AlEF
    Resin 1.320 - - - -
    γ-Al2O3 0.165 0.000 0.027 -
    ZSM-5-30 0.784 0.492 0.038 93.1 6.9
    ZSM-5-100 0.296 0.178 0.034 96.2 3.8
    ZSM-5-180 0.187 0.092 0.016 97.5 2.5
    ZSM-5-250 0.161 0.049 0.009 97.7 2.3
    ZSM-5-400 0.126 0.027 0.005 97.8 2.2
    0.1Al-ZSM-5-100 0.286 0.174 0.042 93.0 7.0
    0.3Al-ZSM-5-100 0.278 0.163 0.048 92.4 7.6
    0.5Al-ZSM-5-100 0.251 0.150 0.057 91.9 8.2
    note: the acidity of resin was determined by the acid-base titration method, the contents of framework Al (AlF) and extra-framework (AlEF) were determined by 27Al MAS NMR
    下载: 导出CSV

    Table  3  Textural properties of the ZSM-5-250 catalyst before and after reaction test

    Catalyst ABET /
    (m2·g-1)
    vtotal /
    (cm3·g-1)
    d /nm
    ZSM-5-250, fresh 339 0.230 0.559
    ZSM-5-250-D, used 310 0.201 0.509
    ZSM-5-250-R, regenerated 342 0.238 0.560
    note: the surface area (ABET) was determined from nitrogen sorption isotherms by BET method; the total pore volume (vtotal) was obtained at a relative pressure of 0.99; the average pore diameter (d) was derived by using the t-plot method
    下载: 导出CSV

    Table  4  Acidity of the ZSM-5-250 catalyst before and after reaction test

    Catalyst Acidity by NH3-TPD /
    (mmol·g-1)
    Acidity Py-FTIR
    /(mmol·g-1)
    Brønsted Lewis
    ZSM-5-250, fresh 0.161 0.049 0.009
    ZSM-5-250-D, used 0.105 0.021 0.003
    ZSM-5-250-R, regenerated 0.159 0.050 0.008
    下载: 导出CSV
  • [1] MU Y B, JIA M C, JIANG W, WAN X B. A novel branched polyoxymethylene synthesized by cationic copolymerization of 1, 3, 5-Trioxane with 3-(Alkoxymethyl)-3-ethyloxetane[J]. Macromol Chem Phys, 2013, 214(23):2752-2760. doi: 10.1002/macp.201300473
    [2] HOFFMANN M, BIZZARRI C, LEITNER W, MULLER T E. Reaction pathways at the initial steps of trioxane polymerisation[J]. Catal Sci Technol, 2018, 8(21):5594-5603. doi: 10.1039/C8CY01691G
    [3] WU Q, LI W, WANG M, HAO Y, CHU T, SHANG J, LI H, ZHAO Y, JIAO Q. Synthesis of polyoxymethylene dimethyl ethers from methylal and trioxane catalyzed by bronsted acid ionic liquids with different alkyl groups[J]. Rsc Adv, 2015, 5(71):57968-57974. doi: 10.1039/C5RA08360E
    [4] BARANOWSKI C J, BAHMANPOUR A M, KROCHER O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME):A review[J]. Appl Catal B:Environ, 2017, 217:407-420. doi: 10.1016/j.apcatb.2017.06.007
    [5] ROESSLER D G-U S-S V. Procédé de préparation du trioxanne: FR1374872[P]. 1964-10-09.
    [6] BALASHOV A L, KRASNOV V L, DANOV S M, CHERNOV A Y, SULIMOV A V. Formation of cyclic oligomers in concentrated aqueous solutions of formaldehyde[J]. J Struct Chem, 2001, 42(3):398-403. doi: 10.1023/A:1012408904389
    [7] GRUTZNER T, HASSE H. Solubility of formaldehyde and trioxane in aqueous solutions[J]. J Chem Eng Data, 2004, 49(3):642-646. doi: 10.1021/je030243h
    [8] MAIWALD M, GRUTZNER T, STROFER E, HASSE H. Quantitative NMR spectroscopy of complex technical mixtures using a virtual reference:Chemical equilibria and reaction kinetics of formaldehyde-water-1, 3, 5-trioxane[J]. Anal Bioanal Chem, 2006, 385(5):910-917. doi: 10.1007/s00216-006-0477-3
    [9] GRUTZNER T, HASSE H, LANG N, SIEGERT M, STROFER E. Development of a new industrial process for trioxane production[J]. Chem Eng Sci, 2007, 62(18/20):5613-5620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c8116edc13beb3c962f260091caa44b2
    [10] MASAMOTO J, HAMANAKA K, YOSHIDA K, NAGAHARA H, KAGAWA K, IWAISAKO T, KOMAKI H. Synthesis of trioxane using heteropolyacids as catalyst[J]. Angew Chem-Int Ed, 2000, 39(12):2102-2104. doi: 10.1002/1521-3773(20000616)39:12<2102::AID-ANIE2102>3.0.CO;2-E
    [11] XIA C, TANG Z, CHEN J, ZHANG X, LI Z, GUO E. Method of synthesizing trioxymethylene from formaldehyde by the catalytic action of an ionic liquid: US7244854B2[P]. 2007-07-17.
    [12] ZHAO Y M, HU Y F, QI J G, MA W T. Bronsted-acidic ionic liquids as catalysts for synthesizing trioxane[J]. Chin J Chem Eng, 2016, 24(10):1392-1398. doi: 10.1016/j.cjche.2016.05.001
    [13] ARIAS-UGARTE R, WEKESA F S, FINDLATER M. Selective aldol condensation or cyclotrimerization reactions catalyzed by FeCl3[J]. Tetrahedron Lett, 2015, 56(19):2406-2411. doi: 10.1016/j.tetlet.2015.03.040
    [14] KIEDIK M, KRUEGER A. Synthesis of trioxane in presence of sulfuric acid and ion-exchange resins as catalyst-comparisons of methods[J]. Przem Chem, 1990, 69(12):539-540.
    [15] DINTZNER M R, MONDJINOU Y A, PILEGGI D J. Montmorillonite clay-catalyzed cyclotrimerization and oxidation of aliphatic aldehydes[J]. Tetrahedron Lett, 2010, 51(5):826-827. doi: 10.1016/j.tetlet.2009.12.009
    [16] LEE S O, KITCHIN S J, HARRIS K D M, SANKAR G, DUGAL M, THOMAS J M. Acid-catalyzed trimerization of acetaldehyde:A highly selective and reversible transformation at ambient temperature in a zeolitic solid[J]. J Phys Chem B, 2002, 106(6):1322-1326. doi: 10.1021/jp012440y
    [17] MORI H, YAMAZAKI T, OZAWA S, OGINO Y. Liquid-phase reaction of acetaldehyde over various ZSM-5 zeolites[J]. Bull Chem Soc Jpn, 1993, 66(9):2498-2504. doi: 10.1246/bcsj.66.2498
    [18] YE Y, YAO M, CHEN H X Z. Influence of silanol defects of ZSM-5 zeolites on trioxane synthesis from formaldehyde[J]. Catal Lett, 2020, 150(5):1445-1453. doi: 10.1007/s10562-019-03040-x
    [19] ISHIDA H, AKAGISHI K. The synthetic reaction of trioxane from formalin on the zeolite catalysts[J]. Nippon Kagaku Kaishi, 1996, (3):290-297. doi: 10.1246/nikkashi.1996.290
    [20] FU M, YE Y, LEI Q, CHEN H, ZHANG X. Research on the synthetic 1, 3, 5-trioxane over ZSM-5 zeolite[J]. Chin J Synthetic Chem, 2020.
    [21] RODRIGUEZ-GONZALEZ L, SIMON U. NH3-TPD measurements using a zeolite-based sensor[J]. Meas Sci Technol, 2010, 21(2):7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d75fb6d8163b3d5a966dc39356c3248
    [22] DIEZ V K, APESTEGUIA C R, DI COSIMO J I. Synthesis of ionones on solid Bronsted acid catalysts:Effect of acid site strength on ionone isomer selectivity[J]. Catal Today, 2010, 149(3/4):267-274. http://cn.bing.com/academic/profile?id=2a11d96941d8d53a28a121efa8e30947&encoded=0&v=paper_preview&mkt=zh-cn
    [23] WU W Q, WEITZ E. Modification of acid sites in ZSM-5 by ion-exchange:An in-situ FT-IR study[J]. Appl Surf Sci, 2014, 316:405-415. doi: 10.1016/j.apsusc.2014.07.194
    [24] JIN F, LI Y D. A FT-IR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule[J]. Catal Today, 2009, 145(1/2):101-107. https://www.sciencedirect.com/science/article/pii/S092058610800271X
    [25] ISERNIA L F. FT-IR study of the relation, between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite[J]. Mater Res-Ibero-Am J, 2013, 16(4):792-802.
    [26] RODRIGUEZ-GONZALEZ L, HERMES F, BERTMER M, RODRIGUEZ-CASTELLON E, JIMENEZ-LOPEZ A, SIMON U. The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy[J]. Appl Catal A:Gen, 2007, 328(2):174-182. doi: 10.1016/j.apcata.2007.06.003
    [27] WOOLERY G L, KUEHL G H, TIMKEN H C, CHESTER A W, VARTULI J C. On the nature of framework bronsted and lewis acid sites in ZSM-5[J]. Zeolites, 1997, 19(4):288-296. doi: 10.1016/S0144-2449(97)00086-9
    [28] LI S H, HUANG S J, SHEN W L, ZHANG H L, FANG H J, ZHENG A M, LIU S B, DENG F. Probing the spatial proximities among acid sites in dealuminated H-Y zeolite by solid-state NMR spectroscopy[J]. J Phys Chem C, 2008, 112(37):14486-14494. doi: 10.1021/jp803494n
    [29] GELBARD G. Organic synthesis by catalysis with ion-exchange resins[J]. Ind Eng Chem Res, 2005, 44(23):8468-8498. doi: 10.1021/ie0580405
    [30] BIRDJA Y Y, KOPER M T M. The importance of cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide[J]. J Am Chem Soc, 2017, 139(5):2030-2034. doi: 10.1021/jacs.6b12008
    [31] RUSSELL A E, MILLER S P, MORKEN J P. Efficient Lewis acid catalyzed intramolecular cannizzaro reaction[J]. J Org Chem, 2000, 65(24):8381-8383. doi: 10.1021/jo0010734
    [32] OESTREICH D, LAUTENSCHUTZ L, ARNOLD U, SAUER J. Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde[J]. Chem Eng Sci, 2017, 163:92-104. doi: 10.1016/j.ces.2016.12.037
    [33] INDU B, ERNST W R, GELBAUM L T. Methanol formic acid esterfication equilibrium in sulfuric acid solutions-influence of sodium salts[J]. Ind Eng Chem Res, 1993, 32(5):981-985. doi: 10.1021/ie00017a031
    [34] MORRIS S A, GUSEV D G. Rethinking the claisen-tishchenko reaction[J]. Angew Chem-Int Ed, 2017, 56(22):6228-6231. doi: 10.1002/anie.201611186
    [35] WU J B, ZHU H Q, WU Z W, QIN Z F, YAN L, DU B L, FAN W B, WANG J G. High Si/Al ratio HZSM-5 zeolite:An efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chem, 2015, 17(4):2353-2357. doi: 10.1039/C4GC02510E
    [36] ARROYO S T, GARCIA A H, ALVERO M M, MARTIN J A S. Theoretical study of the neutral hydrolysis of methyl formate via a concerted and stepwise water-assisted mechanism using free-energy curves and molecular dynamics simulation[J]. Struct Chem, 2011, 22(4):909-915. doi: 10.1007/s11224-011-9777-0
    [37] GLARBORG P, ALZUETA M U, KJAERGAARD K, DAM-JOHANSEN K. Oxidation of formaldehyde and its interaction with nitric oxide in a flow reactor[J]. Combust Flame, 2003, 132(4):629-638. doi: 10.1016/S0010-2180(02)00535-7
    [38] HOCHGREB S, DRYER F L. A comprehensive study on CH2O oxidation kinetics[J]. Combust Flame, 1992, 91(3/4):257-284.
    [39] OLM C, VARGA T, VALKO E, CURRAN H J, TURANYI T. Uncertainty quantification of a newly optimized methanol and formaldehyde combustion mechanism[J]. Combust Flame, 2017, 186:45-64. doi: 10.1016/j.combustflame.2017.07.029
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  34
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-20
  • 修回日期:  2020-03-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-03-10

目录

    /

    返回文章
    返回