留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨相氮化碳负载磷钨酸杂化材料的制备及其氧化脱硫催化性能

李旭贺 方磊 杨浩 张健 梁飞雪 王海彦 王彦娟

李旭贺, 方磊, 杨浩, 张健, 梁飞雪, 王海彦, 王彦娟. 石墨相氮化碳负载磷钨酸杂化材料的制备及其氧化脱硫催化性能[J]. 燃料化学学报(中英文), 2019, 47(2): 174-182.
引用本文: 李旭贺, 方磊, 杨浩, 张健, 梁飞雪, 王海彦, 王彦娟. 石墨相氮化碳负载磷钨酸杂化材料的制备及其氧化脱硫催化性能[J]. 燃料化学学报(中英文), 2019, 47(2): 174-182.
LI Xu-he, FANG Lei, YANG Hao, ZHANG Jian, LIANG Fei-xue, WANG Hai-yan, WANG Yan-juan. Preparation of g-C3N4 supported phosphotungstate hybrid materials and their catalytic performance in the oxidative desulfurization[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 174-182.
Citation: LI Xu-he, FANG Lei, YANG Hao, ZHANG Jian, LIANG Fei-xue, WANG Hai-yan, WANG Yan-juan. Preparation of g-C3N4 supported phosphotungstate hybrid materials and their catalytic performance in the oxidative desulfurization[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 174-182.

石墨相氮化碳负载磷钨酸杂化材料的制备及其氧化脱硫催化性能

基金项目: 

辽宁省自然科学基金 20170540475

详细信息
  • 中图分类号: O643.32

Preparation of g-C3N4 supported phosphotungstate hybrid materials and their catalytic performance in the oxidative desulfurization

Funds: 

the Natural Science Foundation of Liaoning Province 20170540475

More Information
  • 摘要: 以1-丁基-3-甲基咪唑溴离子液体([Bmim]Br)、磷钨酸(H3PW12O40)和g-C3N4为原料,采用原位沉淀法合成了负载型[Bmim]3PW12O40/g-C3N4催化剂(BPWO/g-C3N4)。通过XRD、FT-IR、UV-vis、氮气吸附、TEM和XPS等手段对催化剂的形貌和结构进行了表征,并以二苯并噻吩(DBT)的正庚烷溶液为模拟油、过氧化氢为氧化剂,考察了各组分负载量、催化剂用量、氧/硫物质的量比(O/S)和反应温度变量等对其氧化脱硫效果的影响。结果表明,BPWO/g-C3N4具有Keggin型杂多阴离子结构特征,BPWO(20%)/g-C3N4催化剂具有最优的对DBT的氧化脱硫性能,在50℃、O/S物质的量比为6.0的条件下反应180 min,可以完全氧化浓度为800 μg/g的含DBT模拟油。同时,该BPWO/g-C3N4催化剂具有良好的重复使用性能,循环使用八次后其对DBT的氧化活性没有明显降低。
  • 图  1  g-C3N4、BPWO (20% -80%)/g-C3N4和BPWO样品的XRD谱图

    Figure  1  XRD patterns of g-C3N4, BPWO (20% -80%)/g-C3N4 and BPWO

    图  2  g-C3N4、BPWO (20% -80%)/g-C3N4和BPWO样品的FT-IR谱图

    Figure  2  FT-IR spectra of g-C3N4, BPWO (20% -80%)/g-C3N4 and BPWO

    图  3  g-C3N4、BPWO和BPWO(20%)/g-C3N4样品的UV-vis谱图

    Figure  3  UV-vis spectra of g-C3N4, BPWO and BPWO (20%)/g-C3N4

    图  4  g-C3N4(a)、BPWO(b)和BPWO (20%)/g-C3N4((c)、(d))样品的TEM照片

    Figure  4  TEM images of g-C3N4(a), BPWO (b) and BPWO (20%)/g-C3N4((c)、(d))

    图  5  BPWO和BPWO(20%)/g-C3N4的XPS谱图

    Figure  5  XPS spectra of BPWO and BPWO (20%)/g-C3N4

    (a): the survey spectrum of BPWO; (b): the survey spectrum BPWO (20%)/g-C3N4; and the XPS spectra of BPWO(20%)/g-C3N4 for (c): C 1s; (d): N 1s; (e): O 1s; (f): W 4f

    图  6  催化剂加入量对DBT在BPWO/g-C3N4-H2O2体系中转化率的影响

    Figure  6  DBT conversion with the reaction time in the BPWO/g-C3N4-H2O2 system with different catalyst amounts for the oxidation of DBT at 40 ℃ with an O/S molar ratio of 4.0

    图  7  温度对DBT在BPWO/g-C3N4-H2O2体系中转化率的影响

    Figure  7  Influence of reaction temperature on the catalytic performance of BPWO/g-C3N4 in the ODS of DBT with an O/S molar ratio of 4.0

    图  8  O/S物质的量比对DBT在BPWO/g-C3N4-H2O2体系中转化率的影响

    Figure  8  Influence of the O/S molar ratio on the catalytic performance of BPWO/g-C3N4 towards in the ODS of DBT at 50 ℃

    图  9  BPWO (20%)/g-C3N4催化剂的循环使用性能

    Figure  9  Catalytic performances of fresh and reused BPWO (20%)/g-C3N4 in ODS of DBT

    图  10  BPWO/g-C3N4催化氧化脱硫机理图

    Figure  10  Mechanism for oxidative desulfurization catalyzed by BPWO/g-C3N4

    表  1  不同催化剂的比表面积及其氧化DBT的活性

    Table  1  Surface area and catalytic activity in DBT oxidation on different catalysts

    Catalyst Surface area A/(m2·g-1) DBT conversion x/%
    g-C3N4 57.17 2.3
    BPWO (20%)/g-C3N4 43.18 87.0
    BPWO (40%)/g-C3N4 35.56 60.8
    BPWO (60%)/g-C3N4 29.49 53.4
    BPWO (80%)/g-C3N4 22.30 17.3
    BPWO 17.32 14.0
    reaction conditions: 40 ℃, 180 min, the amount of catalyst was 0.05 g, and with an O/S molar ratio of 4.0
    下载: 导出CSV
  • [1] 田春荣. 2017年中国石油进出口状况分析[J].国际石油经济, 2018, 26(3):10-20. doi: 10.3969/j.issn.1004-7298.2018.03.002

    TIAN Chun-rong. China's oil imports and exports in 2017[J]. Int Pet Econ, 2018, 26(3):10-20. doi: 10.3969/j.issn.1004-7298.2018.03.002
    [2] 赵地顺, 李俊盼, 张娟, 任培兵, 葛京京, 任腾杰, 崔云.季铵盐类金属基离子液体对燃料油萃取脱硫性能研究[J].有机化学, 2014, 34(7):1462-1468. http://d.old.wanfangdata.com.cn/Periodical/yjhx201407026

    ZHAO Di-shun, LI Jun-pan, ZHANG Juan, REN Pei-bing, GE Jing-jing, REN Teng-jie, CUI Yun. Extractive desulfurization of fule oil with metal-based hyamine lonic liquids[J]. Chin J Org Chem, 2014, 34(7):1462-1468. http://d.old.wanfangdata.com.cn/Periodical/yjhx201407026
    [3] KOBAYASHI T, LI Y Y. Performance and characterization of a newly developed self-agitated anaerobic reactor with biological desulfurization[J]. Bioresour Technol, 2011, 102(10):5580-5588. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a96580d964f75bd3a43c72320dc9b29
    [4] NEKHOROSHEV V P, NEKHOROSHEV S V, TUROV Y P, KHARITONOVA V E, KHALYAPOVA A D. Composition of concentrates isolated by complexation with aluminum and zinc halides from petroleum fuel fractions during their desulfurization[J]. Pet Chem, 2018, 58(5):400-406. doi: 10.1134/S0965544118050134
    [5] 丁润东, 祖运, 周传行, 王焕, 莫周胜, 秦玉才, 孙兆林, 宋丽娟. CuNaY分子筛的有效吸附位与其脱硫性能的关联性研究[J].燃料化学学报, 2018, 46(4):451-458. doi: 10.3969/j.issn.0253-2409.2018.04.010

    DING Run-dong, ZU Yun, ZHOU Chuan-hang, WANG Huan, MO Zhou-sheng, QIN Yu-cai, SUN Zhao-lin, SONG Li-juan. Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite[J]. J Fuel Chem Technol, 2018, 46(4):451-458. doi: 10.3969/j.issn.0253-2409.2018.04.010
    [6] FAZLE S, SOBIA A, YAN Z F, LIU Z, MUHAMMAD I, ROOH U, ETIM U J, AYAZ A. Ammonia assisted functionalization of cuprous oxide within confined spaces of SBA-15 for adsorptive desulfurization[J]. Chem Eng J, 2018, 339:557-565. https://www.sciencedirect.com/science/article/pii/S1385894718301682
    [7] YANG P, ZHOU S Y, DU Y, LI J S, LEI J H. Self-assembled meso/macroporous phosphotungstic acid/TiO2 as an efficient catalyst for oxidative desulfurization of fuels[J]. J Porous Mater, 2017, 24(2):531-539. doi: 10.1007/s10934-016-0288-7
    [8] ZHU W S, WU P W, YANG L, CHANG Y H, CHAO Y H, LI H M, JIANG Y Q, JIANG W, XUN S H. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels[J]. Chem Eng J, 2013, 229(4):250-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1d141395f8172fb8f8549a409a1bcfbb
    [9] LV G J, DENG S L, ZHAI Y, ZHU Y Q, LI H C, WANG F M, ZHANG X B. P123 lamellar micelle-assisted construction of hierarchical TS-1 stacked nanoplates with constrained mesopores for enhanced oxidative desulfurization[J]. Appl Catal A:Gen, 2018, 567:28-35.
    [10] YUE S, SONG Q, ZANG S L, DENG G C, LI J. Synthesis of polyoxomolybdate-quinoline compounds beads for catalytic oxidative desulfurization[J]. Mol Catal, 2018, 455:88-94. doi: 10.1016/j.mcat.2018.02.014
    [11] ZHAO R J, WANG J L, ZHANG D D, SUN Y H, HAN B X, TANG N, WANG N, LI K X. Biomimetic oxidative desulfurization of fuel oil in ionic liquids catalyzed by Fe (Ⅲ) porphyrins[J]. Appl Catal A:Gen, 2017, 532:26-31. doi: 10.1016/j.apcata.2016.12.008
    [12] 王建龙, 赵地顺, 周二鹏, 董芝.吡啶类离子液体在汽油萃取脱硫中的应用研究[J].燃料化学学报, 2007, 35(3):293-296. doi: 10.3969/j.issn.0253-2409.2007.03.008

    WANG Jian-long, ZHAO Di-shun, ZHOU Er-dong, DONG Zhi. Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids[J]. J Fuel Chem Technol, 2007, 35(3):293-296. doi: 10.3969/j.issn.0253-2409.2007.03.008
    [13] HUANG D, WANG Y J, AND L M Y, LUO G S. Chemical oxidation of dibenzothiophene with a directly combined amphiphilic catalyst for deep desulfurization[J]. Ind Eng Chem Res, 2006, 45(6):1880-1885. doi: 10.1021/ie0513346
    [14] ZHAO D S, SUN Z M, LI F T, LIU R, SHAN H D. Oxidative desulfurization of thiophene catalyzed by (C4H9)4NBr-2C6H11NO coordinated ionic liquid[J]. Energy Fuels, 2008, 22(5):3065-3069. doi: 10.1021/ef800162w
    [15] 侯影飞, 李力军, 蒋驰, 郭宁, 牛青山.活性炭负载磷钨酸催化剂的制备及其催化氧化脱硫性能[J].化工进展, 2017, 36(11):4072-4079. http://d.old.wanfangdata.com.cn/Periodical/hgjz201711020

    HOU Ying-fei, LI Li-jun, JIANG Chi, GUO Ning, NIU Qing-shan. Preparation and performance of phosphotungstic acid/activated carbon catalyst for catalytic oxidative desulfurization[J]. Chem Ind Eng Prog, 2017, 36(11):4072-4079. http://d.old.wanfangdata.com.cn/Periodical/hgjz201711020
    [16] 邢鹏飞, 李秀萍, 贾宝军, 赵荣祥. MoO3/g-C3N4催化剂的制备及其氧化脱除模拟油中的硫化物[J].化工进展, 2016, 35(12):3934-3941. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201612029

    XING Peng-fei, LI Xiu-ping, JIA Bao-jun, ZHAO Rong-xiang. Preparation of MoO3/g-C3N4 catalyst and its application in the oxidation desulfurization of model oil[J]. Chem Ind Eng Prog, 2016, 35(12):3934-3941. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201612029
    [17] 李秀萍, 赵荣祥, 邢鹏飞. NiWO4/g-C3N4的制备及其在离子液体中氧化脱硫性能的研究[J].燃料化学学报, 2017, 45(11):1340-1348. doi: 10.3969/j.issn.0253-2409.2017.11.009

    LI Xiu-ping, ZHAO Rong-xiang, XING Peng-fei. Preparation of NiWO4/g-C3N4 and its ultra-deep desulfurization properties in ionic liquid[J]. J Fuel Chem Technol, 2017, 45(11):1340-1348. doi: 10.3969/j.issn.0253-2409.2017.11.009
    [18] LI X Z, ZHU W, LU X W, ZUO X H, YAO C, NI C Y. Integrated nanostructures of CeO2/attapulgite/g-C3N4 as efficient catalyst for photocatalytic desulfurization:Mechanism, kinetics and influencing factors[J]. Chem Eng J, 2017, 326:87-98. https://www.sciencedirect.com/science/article/pii/S1385894717308902
    [19] RAO G R, RAJKUMAR T, VARGHESE B. Synthesis and characterization of 1-butyl 3-methyl imidazolium phosphomolybdate molecular salt[J]. Solid State Sci, 2009, 11(1):36-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=927a82c4507850e796c69c6c63f9a0dc
    [20] LI G Z, SALIM C, HINODE H. Hydrothermal syntheses and crystal structures of two hybrid materials constructed from polyoxometalate clusters and metal-dipyridine complexes[J]. Solid State Sci, 2008, 10(2):121-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=93dbb2fd658b56ad567a1fe484581b84
    [21] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17):10397-10401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f333f752e6ae715b92ed6046fecb74b
    [22] WANG X C, BLECHERT S, ANTONIETTI M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catal, 2012, 2(8):1596-1606. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225083728/
    [23] ZHANG J S, CHEN X F, TAKANABE K, MAEDA K, DOMEN K, EPPING J D, FU X Z, ANTONIETTI M, WANG X C. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J]. Angew Chem Int Ed, 2010, 49(2):441-444. doi: 10.1002-anie.200903886/
    [24] CHAI B, PENG T Y, MAO J, LI K, ZAN L. Graphitic carbon nitride (g-CN)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation[J]. Phys Chem Chem Phys, 2012, 14(48):16745-16752. https://www.ncbi.nlm.nih.gov/pubmed/23138223
    [25] GE L, HAN C. Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity[J]. Appl Catal B:Environ, 2012, 117-118(1):268-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a7072064d4423228dab8ad09437d457
    [26] LEI W W, PORTENHAULT D, DIMOVA R, ANTONIETTI M. Boron carbon nitride nanostructures from salt melts:Tunable water-soluble phosphors[J]. J Chem Soc, 2011, 133(18):5300-5303. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223079109/
    [27] HE T, YAO J. Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates[J]. Prog Mater Sci, 2006, 51(6):810-879. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=83a309df9edec335a286e202840b4213
    [28] 张健.钼基催化剂氧化脱除柴油中含硫化合物的研究[D].大连: 大连理工大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10141-1011109333.htm

    ZHANG-Jian. Oxidative desulfurization of sulfur-containing compounds in diesel using molybdenum-based catalysts[D]. Dalian: Dalian University of Technology, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10141-1011109333.htm
    [29] GU Y, CHEN L, SHI L, MA J, YANG Z, QIAN Y. Synthesis of CN and graphite by reacting cyanuric chloride with calcium cyanamide[J]. Carbon, 2003, 41(13):2674-2676. https://www.sciencedirect.com/science/article/pii/S0008622303003579
    [30] PETTERSON T A, CARVER J C, LEYDEN D E, HERCULES D M. A surface study of cobalt-molybdena-alumina catalysts using X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976, 80(15):1700-1708. doi: 10.1021/j100556a011?journalCode=jpchax
    [31] DONG F, WU L, SUN Y, FU M, WU Z B, LEE S C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. J Mater Chem, 2011, 21(39):15171-15174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=09404bfb6fd2cf3d09bb0bf7ab042249
    [32] NG K T, HERCULES D M. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976, 80(19):2094-2102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8VyYdxzyYoxOkP7lQtDynu+PEhJ8E3K0Z/7koghVNMI=
    [33] TUREK W, EDYTA S P, PRO-A, HABER J. Propylene oxidation over poly(azomethines) doped with heteropolyacids[J]. J Catal, 2000, 189(2):297-313. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2031905203487ea46c8956344bd2d9a
    [34] DUNCAN D C, CHAMBERS R C, HECHT E, HILL C L. Mechanism and dynamics in the H3[PW12O40]- catalyzed selective epoxidation of terminal olefins by H2O2 formation, reactivity, and stability of {PO4[WO(O2)2]4}3-[J]. J Appl Biomech, 1995, 15(2):95-105. https://www.mendeley.com/catalogue/mechanism-dynamics-h3pw12o40catalyzed-selective-epoxidation-terminal-olefins-h2o2-formation-reactivi/
    [35] NG K T, HERCULES D M. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976, 80(19):2094-2102. https://www.mendeley.com/catalogue/studies-nickeltungstenalumina-catalysts-xray-photoelectron-spectroscopy/
    [36] HUANG D, WANG Y J, AND L M Y, LUO G S. Chemical oxidation of dibenzothiophene with a directly combined amphiphilic catalyst for deep desulfurization[J]. Ind Eng Chem Res, 2006, 45(6):1880-1885. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2156101992e47f88f8010eaadf2bea2f
    [37] HUANG D, ZHAI Z, LU Y C, YANG L M, LUO G S. Optimization of composition of a directly combined catalyst in dibenzothiophene oxidation for deep desulfurization[J]. Ind Eng Chem Res, 2007, 46(5):1447-1451. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=02c3b1ee525aac8a6136b99cad50d632
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  62
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-29
  • 修回日期:  2018-12-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-02-10

目录

    /

    返回文章
    返回