留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱金属沉积对Mn-Ce/TiO2低温SCR催化剂性能影响

闫东杰 李亚静 玉亚 黄学敏 周卫可 刘颖慧

闫东杰, 李亚静, 玉亚, 黄学敏, 周卫可, 刘颖慧. 碱金属沉积对Mn-Ce/TiO2低温SCR催化剂性能影响[J]. 燃料化学学报(中英文), 2018, 46(12): 1513-1519.
引用本文: 闫东杰, 李亚静, 玉亚, 黄学敏, 周卫可, 刘颖慧. 碱金属沉积对Mn-Ce/TiO2低温SCR催化剂性能影响[J]. 燃料化学学报(中英文), 2018, 46(12): 1513-1519.
YAN Dong-jie, LI Ya-jing, YU Ya, HUANG Xue-min, ZHOU Wei-ke, LIU Ying-hui. Effect of alkali metal deposition on Mn-Ce/TiO2 catalyst for NO reduction by NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1513-1519.
Citation: YAN Dong-jie, LI Ya-jing, YU Ya, HUANG Xue-min, ZHOU Wei-ke, LIU Ying-hui. Effect of alkali metal deposition on Mn-Ce/TiO2 catalyst for NO reduction by NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1513-1519.

碱金属沉积对Mn-Ce/TiO2低温SCR催化剂性能影响

基金项目: 

陕西省自然科学基础研究计划项目 2016JQ5095

陕西省教育厅科研计划项目 17JK0465

详细信息
  • 中图分类号: X511

Effect of alkali metal deposition on Mn-Ce/TiO2 catalyst for NO reduction by NH3 at low temperature

Funds: 

the Natural Science Foundation of Shaanxi Province 2016JQ5095

Scientific Research Plan Projects of Educational Department of ShaanXi Province 17JK0465

More Information
  • 摘要: 采用溶胶凝胶法制备了Mn-Ce/TiO2低温SCR催化剂,考察了碱金属浓度与种类对催化剂活性的影响,探究了不同反应条件下钠盐沉积对活性保留分率的影响,利用SEM、BET、XRD和FT-IR对催化剂碱金属中毒原因进行了分析。结果表明,碱金属毒化后催化剂脱硝活性下降,钾中毒催化剂失活程度高于钠中毒的催化剂,2%钾中毒催化剂在160℃时NO去除率为62.0%,较新鲜催化剂下降29.2%。这主要因为碱金属毒化造成催化剂比表面积明显减小,且催化剂载体锐钛矿型TiO2部分转化为金红石型,BET和SEM表征均说明碱金属沉积堵塞了催化剂表面的微孔。碱金属对Mn-Ce/TiO2催化剂活性保留分率的影响表明,催化剂的颗粒粒径对其活性保留分率影响不大,碱金属含量减小、温度升高,Mn-Ce/TiO2催化剂的活性保留分率增加,Na2SO4和NaCl对Mn-Ce/TiO2催化剂的脱硝活性抑制作用大于KNO3
  • 图  1  反应装置示意图

    Figure  1  Schematic diagram of the reaction device

    1: gas; 2: flowmeter; 3: mixed gas cylinder; 4: temperature controller; 5: catalytic reactor; 6: tubular furnace; 7: flue gas analyzer; 8: absorption apparatus for tail gas

    图  2  碱金属种类对脱硝效率的影响

    Figure  2  Effect of alkali metals on the activity of the catalyst

    图  3  催化剂中毒前后的XRD谱图

    Figure  3  XRD patterns of the catalyst before and after poisining

    图  4  催化剂中毒前后的FT-IR谱图

    Figure  4  FT-IR patterns of the catalysts before and after poisoning

    图  5  催化剂中毒前后的SEM照片

    Figure  5  SEM patterns of the catalysts before and after poisoning

    图  6  催化剂粒径对活性保留分率的影响

    Figure  6  Effect of catalyst particle size on the activity retention fraction

    图  7  反应温度对活性保留分率的影响

    Figure  7  Effect of reaction temperature on the activity retention fraction

    图  8  钠盐浓度对活性保留分率的影响

    Figure  8  Effect of sodium salt concentration on the activity retention fraction

    图  9  钠盐形态对活性保留分率的影响

    Figure  9  Effect of sodium salt species on the activity retention fraction

    图  10  催化剂氯化钠、硝酸钠和硫酸钠中毒的FT-IR谱图

    Figure  10  FT-IR patterns of the catalysts poisoned by NaCl, NaNO3 and Na2SO4

    图  11  催化剂氯化钠、硝酸钠和硫酸钠中毒的XRD谱图

    Figure  11  XRD patterns of the catalysts poisoned by NaCl, NaNO3 and Na2SO4

    表  1  催化剂的比表面积、平均孔径和总孔容

    Table  1  Specific surface area, average pore size and total pore volume of the catalysts

    Catalyst Specific surface area A/(m2·g-1) Average pore size d /nm Total pore volume v /(m3·g-1)
    Fresh 90.76 17.72 0.76
    Na poisoning 65.29 21.05 0.58
    K poisoning 59.69 21.78 0.55
    下载: 导出CSV
  • [1] 郝吉明, 马广大, 王书肖.大气污染控制工程(第三版)[M].北京:高等教育出版社. 2010:378.

    HAO Ji-ming, MA Guang-da, WANG Shu-xiao. Air Pollution Control Engineering(Third Edition)[M]. Beijing:Higher Education Press, 2010:378.
    [2] DU X S, YANG G P, CHEN Y R, RAN JY, ZHANG L. The different poisoning behaviors of various alkali metal containing compounds on SCR catalyst[J]. Appl Surf Sci, 2017, 392:162-168. doi: 10.1016/j.apsusc.2016.09.036
    [3] CIMINO S, LISI L, TORTORLLI M. Low temperature SCR on supported MnOx catalysts for marine exhaust gas cleaning:Effect of KCl poisoning[J]. Chem Eng J, 2016, 283:223-230. doi: 10.1016/j.cej.2015.07.033
    [4] 陈巳樊.碱金属对钒钛催化剂脱硝行为的影响[D].北京: 北京化工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10010-1013267106.htm

    CHEN Yi-fan. Effects of alkali metals on the denitration behavior of vanadium-titanium catalysts[D]. Beijing: Beijing University of Chemical Technology, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10010-1013267106.htm
    [5] 韩斌.碱金属对催化剂脱硝活性的影响及其本征动力学研究[D].北京: 北京化工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10010-1013267157.htm

    HAN Bin. Effects of alkali metals on denitrification activity of catalysts and their intrinsic kinetics[D]. Beijing: Beijing University of Chemical Technology, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10010-1013267157.htm
    [6] KLING A, ANDERSSON C, MYRINGER A, ESKILSSON D, JÄRÃS S G. Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100 MW-scale biofuel and peat fired boilers:Influence of flue gas composition[J]. Appl Catal B:Environ, 2007, 69(3/4):240-251. http://www.sciencedirect.com/science/article/pii/S0926337306001044
    [7] ZHENG Y J, JENSEN A D, JOHNSSON J E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Appl Catal B:Environ, 2005, 60(3/4):253-264.
    [8] JIANG Y, ZHANG Y X, WU W H, GAO X. Kinetic study on potassium poisoning of V2O5/TiO2 catalysts for selective catalytic reduction of NO in flue gas[J]. Proc CSEE, 2014, 34(23):3899-3906. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201423010
    [9] CHEN J P, YANG R T. Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3[J]. J Catal, 1990, 125(2):411-420. doi: 10.1016/0021-9517(90)90314-A
    [10] 沈伯雄, 熊丽仙, 刘亭, 王静, 田晓娟.纳米负载型V2O5-WO3/TiO2催化剂碱中毒及再生研究[J].燃料化学学报, 2010, 38(1):85-91. doi: 10.3969/j.issn.0253-2409.2010.01.016

    SHEN Bo-xiong, XIONG Li-xian, LIU Ting, WANG Jing, TIAN Xiao-juan. Alkali deactivation and regeneration of nano V2O5-WO3/TiO2 catalysts[J]. J Fuel Chem Technol, 2010, 38(1):85-91. doi: 10.3969/j.issn.0253-2409.2010.01.016
    [11] 王舜.活性炭负载二氧化钛催化剂的制备及光电催化性能的研究[D].南京: 南京航空航天大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10287-1014006049.htm

    WANG Shun. Preparation and photoelectrocatalytic performance of activated carbon supported titania catalyst[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10287-1014006049.htm
    [12] 黄继辉, 童华, 童志权, 张俊峰, 黄妍. H2O和SO2对Mn-Fe/MPS催化剂用于NH3低温还原NO的影响[J].过程工程学报, 2008, 8(16):517-522. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgyj200803018

    HUANG Ji-hui, TONG Hua, TONG Zhi-quan, ZHANG Jun-feng, HUANG Yan. Effect of H2O and SO2 on Mn-Fe/MPS catalysts for NO reduction by NH3 at low temperature[J]. Chin J Process Eng, 2008, 8(16):517-522. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgyj200803018
    [13] CENTENO M A, CARRZOSA I, ODRIOZOIA J A. NO-NH3 coad sorption on vanadia/titania catalysts:Determination of the reduction degree of vanadium[J]. Appl Catal B:Environ, 2001, 29(4):307-314. doi: 10.1016/S0926-3373(00)00214-9
    [14] 郑足红. Mn-V-Ce/TiO2低温催化处理NOx活性及抗毒化性能研究[D].湘潭: 湘潭大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10530-2010012438.htm

    ZHENG Zhu-hong. Low temperature catalytic treatment of NOx with Mn-V-Ce/TiO2 and its anti-toxicity performance[D]. Xiangtan: Xiangtan University, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10530-2010012438.htm
    [15] GASIOR M, HABER J, MACHEJ T, CZEPPE T. Mechanism of the reaction NO+NH3 on V5O2 catalysts[J]. J Mol Catal, 1988, 43(3):359-369. doi: 10.1016/0304-5102(88)85147-2
    [16] TOPSØE N Y, TOPSØE H, DUMESIC J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia:Ⅰ. Combined temperature-programmed in-situ, ftir and on-line mass-spectroscopy studies[J]. J Catal, 1995, 151(1):226-240. doi: 10.1006/jcat.1995.1024
    [17] TOPSØE N Y. Characterization of the nature of surface sites on vanadia-titania catalysts by FTIR[J]. J Catal, 1991, 128(2):499-511. doi: 10.1016/0021-9517(91)90307-P
    [18] ZHENG Y, JENSEN A D, JOHNSSON J E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J].Appl Catal B:Environ, 2005, 60(3/4):253-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=42d7a4e07ea28dd4a7cd809f85ca684d
    [19] KRÖCHER O, ELSENER M. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution Ⅰ.Catalytic studies[J]. Appl Catal B:Environ, 2008, 77(3/4):215-2227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41b830f008a174fb8cbb66f274c9e417
    [20] CHEN L, LI J, GE M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chem Eng J, 2011, 170(2/3):531-537. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=399fd63147e1906cfaa41d3df0ae8a45
    [21] 姜烨.钛基SCR催化剂及其钾、铅中毒机理研究[D].杭州: 浙江大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10335-1011052213.htm

    JIANG Ye. Titanium-based SCR catalyst and its mechanism of potassium and lead poisoning[D]. Hangzhou: Zhejiang University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10335-1011052213.htm
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  27
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-15
  • 修回日期:  2018-09-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-12-10

目录

    /

    返回文章
    返回