留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高硅煤燃烧过程中矿物转化及重金属分布规律研究

李文举 龚本根 张军营

李文举, 龚本根, 张军营. 高硅煤燃烧过程中矿物转化及重金属分布规律研究[J]. 燃料化学学报(中英文), 2020, 48(12): 1488-1497.
引用本文: 李文举, 龚本根, 张军营. 高硅煤燃烧过程中矿物转化及重金属分布规律研究[J]. 燃料化学学报(中英文), 2020, 48(12): 1488-1497.
LI Wen-ju, GONG Ben-gen, ZHANG Jun-ying. Study on the mineral transformation and heavy metal distribution during high-silicon coal combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1488-1497.
Citation: LI Wen-ju, GONG Ben-gen, ZHANG Jun-ying. Study on the mineral transformation and heavy metal distribution during high-silicon coal combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1488-1497.

高硅煤燃烧过程中矿物转化及重金属分布规律研究

基金项目: 

国家重点研发计划 2017YFB0603101

国家自然科学基金 41672148

河南省科技厅软科学项目 202400410295

河南省高等学校重点科研项目 20B610007

详细信息
  • 中图分类号: TK16

Study on the mineral transformation and heavy metal distribution during high-silicon coal combustion

Funds: 

the National Key Research and Development Program of China 2017YFB0603101

National Natural Science Foundation of China 41672148

Soft Science Project of Henan Science and Technology Department 202400410295

Key Scientific Research Projects of Colleges and Universities in Henan Province 20B610007

More Information
  • 摘要: 选取云南宣威地区高硅煤,对其在燃烧过程中矿物转化特征及重金属分布富集规律进行了研究。高硅煤中的矿物主要由石英、高岭石、黄铁矿和锐钛矿组成。飞灰中莫来石可能来自煤中石英、高岭石的转变,而石英主要来自煤中原始石英组分或由SiO2-Al2O3系统转化形成。分析高硅煤和高硅飞灰中部分重金属的富集特性,发现高硅煤中富集的元素有Cr、Cu和As,电厂ESP各级电场中富集的重金属有Mo元素,而Se元素在高硅煤和飞灰中分别都低于世界煤和飞灰的平均值。放射性元素Th和U含量在细粒径的高硅飞灰中都高于世界煤灰平均值,在ESP的4电场飞灰中富集系数分别为1.51和1.59。
  • 图  1  高硅煤(a)及其高温灰(b)的XRD谱图

    Figure  1  XRD patterns of the high-silicon coal

    (a) and its high temperature ash (b) Q: quartz; K: kaolinite; P: pyrite: A: anatase; H: hematite

    图  2  DD高硅煤的TG-DSC曲线

    Figure  2  TG-DSC curves of the DD high-silicon coal

    图  3  不同粒径的DD电厂粉煤灰的XRD谱图

    Figure  3  XRD patterns of the fly ash of the DD power plant with different particle sizes

    (a): unsized; (b): 38.5-74 μm; (c): < 30.8 μm; Q: quartz; M: mullite

    图  4  DD电厂高硅飞灰的ESEM-EDX

    Figure  4  ESEM-EDX images of the high-silicon fly ash in the DD power plant

    (a): overall morphology of coarse fly ash; (b): overall morphology of fine fly ash; (c), (d): hollow spherical particle; (e): Fe-bearing particle; (f): unburned carbon

    图  5  高硅煤重金属的富集系数(DD煤/世界硬煤平均值)

    Figure  5  Enrichment factors of heavy metals in the high-silicon coal (DD coal/average of world hard coal)

    图  6  高硅飞灰重金属的含量

    Figure  6  Heavy metal contents of the high-silicon fly ashes

    图  7  高硅飞灰中重金属富集系数

    Figure  7  Enrichment factors of heavy metals in the high-silicon fly ash

    图  8  煤燃烧过程中矿物转化和重金属迁移富集关系

    Figure  8  Relationship of mineral transformation and heavy metal migration and enrichment during coal combustion

    表  1  工业分析和元素分析

    Table  1  Proximate and ultimate analyses

    Proximate analysis wad/% Ultimate analysis wad/%
    N C S H M V A FC
    1.07 62.44 1.42 2.70 1.70 12.17 28.70 57.43
    ad: air-dry base; M: moisture; V: volatile matter; A: ash; FC: fixed carbon
    下载: 导出CSV

    表  2  高温灰的主要元素组成

    Table  2  Major elemental composition of high temperature ash

    Composition w/%
    SiO2 Al2O3 Fe2O3 CaO MgO Na2O SO3 TiO2 P2O5 MnO
    54.99 29.87 4.32 3.63 1.12 0.93 3.24 1.71 0.16 0.03
    下载: 导出CSV

    表  3  高硅煤及其高温灰中的矿物含量

    Table  3  Mineral contents in the high-silicon coal and its high temperature ash

    Sample Content w/%
    quartz kaolinite pyrite anatase hematite
    DD high-silicon coal 46 26 20 8 -
    High temperature ash 66.37 - - - 33.63
    下载: 导出CSV

    表  4  不同粒径的高硅粉煤灰中矿物质的定量

    Table  4  Mineral contents of the high-silicon fly ash with different particle sizes

    Sample Content w/%
    quartz mullite
    Fly ash (unsized) 70.45 29.55
    Fly ash (38.5-74 μm) 68.31 31.69
    Fly ash (< 30.8 μm) 79.78 20.22
    下载: 导出CSV

    表  5  高硅煤中的重金属含量和富集系数

    Table  5  Heavy metal contents and enrichment factors (EF) of the high-silicon coal

    Heavy metal Content/(μg·g-1) Average of world hard coal EF
    Cr 35.40 17 2.08
    Cu 48.70 16 3.04
    As 18 9 2
    Se 0.56 1.60 0.35
    Mo 2.97 2.10 1.41
    Pb 14.60 9 1.62
    Th 8.85 3.20 2.77
    U 3.29 1.90 1.73
    下载: 导出CSV

    表  6  ESP各级电场飞灰中重金属含量(μg/g)及富集系数

    Table  6  Heavy metal contents (μg/g) of each ESP electric field and enrichment factors (EF) of the high-silicon fly ash

    1 electric field 2 electric field 3 electric field 4 electric field World average
    content EF content EF content EF content EF
    Cr 101 0.84 117 0.98 122 1.02 129 1.08 120
    Cu 159 1.45 174 1.58 199 1.81 205 1.86 110
    As 33.20 0.72 46.4 1.01 53.10 1.15 60.20 1.31 46
    Se 2.45 0.25 3.38 0.34 6.90 0.69 8.69 0.87 10
    Mo 20 1.43 30.50 2.18 35.90 2.56 42.40 3.03 14
    Pb 53 0.96 66.70 1.22 81.90 1.49 89.60 1.63 55
    Th 28.20 1.23 29.60 1.29 32.50 1.41 34.70 1.51 23
    U 14.10 0.94 17.80 1.17 20.60 1.37 23.80 1.59 15
    下载: 导出CSV
  • [1] LU S Y, ZHANG H M, SOJINU S O, LIU G H, ZHANG J Q, NI H G. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China[J]. Environ Monit Assess, 2015, 187(1): 4220.
    [2] MEHARG A A, RAHMAN M M. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption[J]. Environ Sci Technol, 2003, 37(2): 229-234.
    [3] YANG P T, HASHIMOTO Y, WU W J, HUANG J H, CHIANG P N, WANG S L. Effects of long-term paddy rice cultivation on soil arsenic speciation[J]. J Environ Manage, 2020, 254: 109768.
    [4] CLARKE L B, SLOSS L L. Trace Elements Emissions from Coal Combustion and Gasification[M]. London: IEA Coal Research, 1992, 111.
    [5] YAO Z T, JI X S, SARKER P K, TANG J H, GE L Q, XIA M S, XI Y Q. A comprehensive review on the applications of coal fly ash[J]. EarthA-Sci Rev, 2015, 141: 105-121.
    [6] 刘桂建, 彭子成, 杨萍玥, 王桂梁, 宋超.煤中微量元素在燃烧过程中的变化[J].燃料化学学报, 2001, 29(2): 119-123.

    LIU Gui-jian, PENG Zi-cheng, YANG Ping-yue, WANG Gui-liang, SONG Chao. Changes of trace elemetns in coal during combustion[J]. J Fuel Chem Technol, 2001, 29(2): 119-123.
    [7] FINKELMAN R B, OREM W, CASTRANOVA V, TATU C A, BELKIN H B, ZHENG B, LERCH H E, MAHARAJ S V, BATES A L. Health impacts of coal and coal use: Possible solutions[J]. Int J Coal Geol, 2002, 50(1/4): 425-443.
    [8] SAIKIA B K, WARD C R, OLIVEIRA M L S, HOWER J C, LEAO F D, JOHNSTON M N, O'BRYAN A, SHARMA A, BARUAH B P, SILVA L F O. Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): A multi-faceted analytical approach[J]. Int J Coal Geol, 2015, 137: 19-37.
    [9] JONES K B, RUPPERT L F, SWANSON S M. Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants[J]. Int J Coal Geol, 2012, 94: 337-348.
    [10] DUTTA B K, KHANRA S, MALLICK D. Leaching of elements from coal fly ash: Assessment of its potential for use in filling abandoned coal mines[J]. Fuel, 2009, 88(7): 1314-1323.
    [11] AKAR G, POLAT M, GALECKI G, IPEKOGLU U. Leaching behavior of selected trace elements in coal fly ash samples from Yenikoy coal-fired power plants[J]. Fuel Process Technol, 2012, 104: 50-56.
    [12] JEGADEESAN G, AL-ABED, S R, PINTO P. Influence of trace metal distribution on its leachability from coal fly ash[J]. Fuel, 2008, 87(10/11): 1887-1893.
    [13] 董静兰, 耿晓, 高正阳, 刘彦丰.飞灰中的缺陷位SiO2对痕量元素As的吸附机理[J].燃料化学学报, 2018, 46(11): 1401-1408.

    DONG Jing-lan, GENG Xiao, GAO Zheng-yang, LIU Yan-feng. Adsorption mechanism of trace As on the defect sites of SiO2 in fly ash[J]. J Fuel Chem Technol, 2018, 46(11): 1401-1408.
    [14] ZHAO S L, DUAN Y F, LIU M, WANG C P, ZHOU Q, LU J H. Effects on enrichment characteristics of trace elements in fly ash by adding halide salts into the coal during CFB combustion[J]. J Energy Inst, 2018, 91(2): 214-221.
    [15] LAN Q, HE X Z, COSTA D J, TIAN L W, ROTHMAN N, HU G, MUMFORD J L. Indoor coal combustion emissions, GSTM1 and GSTT1 genotypes, and lung canceer risk: A case-control study in Xun Wei, China[J]. Cancer Epidem Biomar, 2000, 9(6): 605-608.
    [16] DAI S F, TIAN L W, CHOU C L, ZHOU Y P, ZHANG M Q, ZHAO L, WANG J M, YANG Z, CAO H Z, REN D Y. Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: Occurrence and origin of quartz and chamosite[J]. Int J Coal Geol, 2008, 76(4): 318-327.
    [17] 雍其润, 龚本根, 赵永椿, 张军营.高硅煤中Si-Al-Fe-Ca四元体系碳热反应研究[J].燃料化学学报, 2017, 45(11): 1296-1302.

    YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal[J]. J Fuel Chem Technol, 2017, 45(11): 1296-1302.
    [18] 周林, 邵龙义, 刘君霞, 宋晓焱.宣威肺癌高发区室内PM10对肺泡上皮细胞凋亡的影响[J].中国环境科学, 2010, 30(7): 1004-1008.

    ZHOU Lin, SHAO Long-yi, LIU Jun-xia, SONG Xiao-yan. Affects of indoor PM10 in Xuanwei on lung cell apoptosis[J]. China Environ Sci, 2010, 30(7): 1004-1008.
    [19] 樊景森, 邵龙义, 王静, 王建英, 李泽熙.云南宣威燃煤室内可吸入颗粒物质量浓度变化特征[J].中国环境科学, 2012, 32(8): 1379-1383.

    FAN Jing-sen, SHAO Long-yi, WANG Jing, WANG Jian-ying, LI Ze-xi. Variations in mass concentrations of indoor inhalable particulates in the coal-burning indoor air in Xuanwei County, Yunnan province[J]. China Environ Sci, 2012, 32(8): 1379-1383.
    [20] ZHAO Y C, ZHANG J Y, ZHENG C G. Transformation of aluminum-rich minerals during combustion of a bauxite-bearing Chinese coal[J]. Int J Coal Geol, 2012, 94: 182-190.
    [21] 于敦喜, 徐明厚, 易帆, 黄建辉, 李庚.燃煤过程中颗粒物的形成机理研究进展[J].煤炭转化, 2004, 27(4): 7-12.

    YU Dun-xi, XU Ming-hou, YI Fan, HUANG Jian-hui, LI Geng. A review on particle formation mechanisms during coal combstion[J]. Coal Convers, 2004, 27(4): 7-12.
    [22] KETRIS M P, YUDOVICH Y E. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals[J]. Int J Coal Geol, 2009, 78(2): 135-148.
    [23] MARTINEZ-TARAZONA M R, SPEARS D A. The fate of trace elements and bulk minerals in pulverized coal combustion in a power station[J]. Fuel Process Technol, 1996, 47(1): 79-92.
    [24] BUHRE B J P, HINKEY J T, GUPTA R P, NELSON P F, WALL T F. Fine ash formation during combustion of pulverised coal-coal property impacts[J]. Fuel, 2006, 85(2): 185-193.
    [25] MCLENNAN A R, BRYANT G W, STANMORE B R, WALL T F. Ash formation mechanisms during pf combustion in reducing conditions[J]. Energy Fuels, 2000, 14(1): 150-159.
    [26] SENIOR C L, BOOL Ⅲ L E, SRINIVASACHAR S, PEASE B R, PORLE K. Pilot scale study of trace element vaporization and condensation during combustion of a pulverized sub-bituminous coal[J]. Fuel Process Technol, 2000, 63: 149-165.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  50
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 修回日期:  2020-10-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回