留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芬顿预处理对木质素快速热解甲氧基脱除规律研究

吴晗 吴凯 张会岩

吴晗, 吴凯, 张会岩. 芬顿预处理对木质素快速热解甲氧基脱除规律研究[J]. 燃料化学学报(中英文), 2020, 48(10): 1186-1192.
引用本文: 吴晗, 吴凯, 张会岩. 芬顿预处理对木质素快速热解甲氧基脱除规律研究[J]. 燃料化学学报(中英文), 2020, 48(10): 1186-1192.
WU Han, WU Kai, ZHANG Hui-yan. Fenton pretreatment of lignin to remove methoxy in pyrolytic bio-oil[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1186-1192.
Citation: WU Han, WU Kai, ZHANG Hui-yan. Fenton pretreatment of lignin to remove methoxy in pyrolytic bio-oil[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1186-1192.

芬顿预处理对木质素快速热解甲氧基脱除规律研究

基金项目: 

国家重点研发项目 2019YFD1100602

国家优秀青年科学基金 51822604

江苏省杰出青年基金 BK20180014

详细信息
  • 中图分类号: TK6

Fenton pretreatment of lignin to remove methoxy in pyrolytic bio-oil

Funds: 

the National Key Research and Development Program of China 2019YFD1100602

The National Nature Science Fund for Excellent Young Scholar (China) 51822604

The Nature Science Fund of Jiangsu Province for Distinguished Young Scholar (China) BK20180014

More Information
  • 摘要: 采用不同H2O2含量的芬顿溶液对碱木质素进行预处理,并结合快速热解,探究轻质生物油中含甲氧基化合物含量的变化规律,同时研究了芬顿溶液对木质素结构的影响规律。结果表明,轻质生物油中含甲氧基团的酚类化合物峰面积从AL(未处理碱木质素)的7.3×109下降至13-FML(H2O2含量为13 mL/g芬顿溶液预处理碱木质素)的5.2×109,减少了0.29倍。而含甲基团和乙基团的酚类化合物峰面积从AL的3.9×109上升到13-FML的7.2×109,增加了0.85倍。同时,轻质生物油产率从22.4%提高到28.7%。通过FT-IR、1H NMR和13C NMR分析发现,芬顿预处理使木质素凝缩性结构单元减少,甲氧基含量降低,为后续快速热解产生低甲氧基含量的生物油提供了有利条件。
  • 图  1  木质素快速热解实验装置示意图

    Figure  1  Schematic diagram of experimental device for fast pyrolysis of lignin

    1-nitrigon; 2-mass flowmeter; 3-temperature control system; 4-sample container; 5-quartz tube reactor; 6-tube furnace; 7-cooling system; 8-drying tube; 9-gas bag

    图  2  木质素快速热解产物产率的分布

    Figure  2  Yield distribution of lignin fast pyrolysis products

    (a): yield distribution of four products; (b): yield distribution of non-condensable gas

    图  3  含甲氧基团与含甲基团和乙基团酚类化合物的峰面积及选择性

    Figure  3  Peak area and selectivity of phenolic compounds containing methoxy groups, methyl groups and ethyl groups

    (a): peak area of phenolic compounds; (b): selectivity of phenolic compounds

    图  4  木质素的红外光谱谱图

    Figure  4  FT-IR spectra analysis of four lignins

    a: AL; b: 3-FML; c: 9-FML; d: 13-FML

    图  5  碱木质素(AL)和芬顿预处理碱木质素(13-FML)的1H NMR谱图

    Figure  5  1H NMR analysis of AL and 13-FML

    图  6  芬顿预处理碱木质素(13-FML)和碱木质素(AL)的13C NMR谱图

    Figure  6  13C NMR analysis of AL and 13-FML

    表  1  轻质生物油的GM-MS分析

    Table  1  GM-MS analysis of light bio-oil

    Time Compounds Peak area of compounds /×109
    AL 3-FML 5-FML 9-FML 13-FML 15-FML
    Phenol methoxy groups       
      15.1phenol, 2-methoxy-1.91.61.31.00.90.9
      16.6phenol, 2-methoxy-3-methyl-0.30.20.20.40.30.2
      17.3phenol, 2-methoxy-4-methyl-0.60.80.80.70.70.7
      19.2phenol, 4-ethyl-2-methoxy-0.80.80.80.70.70.6
      20.42-methoxy-4-vinylphenol1.51.11.01.01.01.0
      21.5phenol, 2, 6-dimethoxy-1.20.70.70.60.50.5
      21.73-methoxy-5-methylphenol0.10.30.30.40.50.4
      23.7phenol, 4-methoxy-3-(methoxymethyl)-0.90.70.70.60.60.5
      Total 7.36.25.85.45.24.8
    Phenol methyl groups and phenol ethyl groups       
      15.0phenol, 2-methyl-0.60.50.50.70.90.8
      15.7phenol, 4-methyl-0.81.21.21.52.01.9
      16.8phenol, 2, 4-dimethyl-0.30.50.40.70.90.7
      17.6phenol, 4-ethyl-1.61.61.51.82.21.9
      18.4phenol, 3-ethyl-5-methyl-0.30.40.40.60.70.3
      20.62-pllylphenol0.30.30.30.40.50.3
      Total 3.94.54.35.77.25.9
    Acid       
      6.7acetic acid0.20.30.30.40.50.6
    Phenol       
      14.0phenol1.21.31.62.02.32.2
    Others       
      Total 4.93.63.74.64.84.7
    下载: 导出CSV
  • [1] 黄煜乾, 吴宇婷, 郑安庆, 赵增立, 李海滨.基于Py-GC-MS的木质素与褐煤共热解特性研究[J].新能源进展, 2017, 5(5):333-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnyjz201705002

    HUANG Yu-qian, WU Yu-ting, ZHENG An-qing, ZHAO Zeng-li, LI Hai-bin. Co-pyrolysis characteristics of lignin and lignite:Analytical Py-GC-MS study[J]. J Circ Syst, 2017, 5(5):333-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnyjz201705002
    [2] PONNUSAMY V K, DINH D N, DHARMARAJA J, SHOBANA S, BANU J R, SARATALE R G, CHANG S W, KUMAR G. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential[J]. Bioresour Technol, 2019, 271:462-472. doi: 10.1016/j.biortech.2018.09.070
    [3] RAGAUSKAS A J, BECKHAM G T, BIDDY M J, CHANDRA R, CHEN F, DAVIS M F, DAVISON B H, DIXON R A, GILNA P, KELLER M, LANGAN P, NASKAR A K, SADDLER J N, TSCHAPLINSKI T J, TUSKAN G A, WYMAN C E. Lignin valorization:Improving lignin processing in the biorefinery[J]. Science, 2014, 344(12468436185):709. http://europepmc.org/abstract/med/24833396
    [4] 董志国, 刘紫灏, 李建, 杨海平, 王磊, 陈汉平.超滤黑液木质素催化热解特性研究[J].太阳能学报, 2020, 41(2):58-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tynxb202002009

    DONG Zhi-guo, LIU Zi-hao, LI Jian, YANG Hai-ping, WANG Lei, CHEN Han-ping. Study on catalytic pyrolysis characteristics of lignin ultrafiltrated from black liquor[J]. Acta Energ Sol Sin, 2020, 41(2):58-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tynxb202002009
    [5] 马欢欢, 万意凌, 谢凌翔, 孟凡蕊, 周建斌.杏壳木质素的结构表征及其热解特性研究[J].生物质化学工程, 2019, 53(6):27-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lchgtx201906005

    MA Huan-huan, WAN Yi-ling, XIE Ling-xiang, MENG Fan-rui, ZHOU Jian-bin. Structural characterization and pyrolysis characteristics of apricot shell lignin[J]. Biomass Chem Eng, 2019, 53(6):27-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lchgtx201906005
    [6] 王霏, 郑云武, 郑志锋.云南松热解及其热解产物的研究[J].生物质化学工程, 2015, 49(4):14-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lchgtx201504003

    WANG Fei, ZHENG Yun-wu, ZHENG Zhi-feng. Yields and compositions of products by pyrolysis of yunnan pine[J]. Biomass Chem Eng, 2015, 49(4):14-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lchgtx201504003
    [7] 郑安庆, 赵增立, 江洪明, 张伟, 常胜, 吴文强, 李海滨.松木预处理温度对生物油特性的影响[J].燃料化学学报, 2012, 40(1):29-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201201005

    ZHENG An-qing, ZHAO Zeng-li, JIANG Hong-ming, ZHANG Wei, CHANG Sheng, WU Wen-qiang, LI Hai-bin. Effect of pretreatment temperature of pine on bio-oil characteristics[J]. J Fuel Chem Technol, 2012, 40(1):29-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201201005
    [8] ZHANG H, XIAO R, WANG D, ZHONG Z, SONG M, PAN Q, HE G. Catalytic fast pyrolysis of biomass in a fluidized bed with fresh and spent fluidized catalytic cracking (FCC) catalysts[J]. Energy Fuels, 2009, 23(12):6199-6206. doi: 10.1021/ef900720m
    [9] DAI G, ZOU Q, WANG S, ZHAO Y, ZHU L, HUANG Q. Effect of torrefaction on the structure and pyrolysis behavior of lignin[J]. Energy Fuels, 2018, 32(4):4160-4166. http://smartsearch.nstl.gov.cn/paper_detail.html?id=2e9b054b90b99d04fe04c24f10f8c9fc
    [10] 洪晨, 邢奕, 司艳晓, 王志强, 刘敏.芬顿试剂氧化对污泥脱水性能的影响[J].环境科学研究, 2014, 27(6):615-622. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=50059544

    HONG Chen, XING Yi, SI Yan-xiao, WANG Zhi-qiang, LIU Min. Influence of Fenton's reagent oxidation on sludge dewaterability[J]. Res Environ Sci, 2014, 27(6):615-622. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=50059544
    [11] WU K, YING W, SHI Z, YANG H, ZHENG Z, ZHANG J, YANG J. Enhancing effect of residual lignins from D. sinicus pretreated with fenton chemistry on enzymatic digestibility of cellulose[J]. Energy Technol, 2018, 6(9):1755-1762. doi: 10.1002/ente.201700880
    [12] WU K, YING W, SHI Z, YANG H, ZHENG Z, ZHANG J, YANG J. Fenton reaction-oxidized bamboo lignin surface and structural modification to reduce nonproductive cellulase binding and improve enzyme digestion of cellulose[J]. ACS Sustainable Chem. Eng, 2018, 6(3):3853-3861. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a6857397c6d346fa4d3976195a85325
    [13] ASMADI M, KAWAMOTO H, SAKA S. Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei[J]. J Anal Appl Pyrolysis, 2011, 92(1):88-98. doi: 10.1016/j.jaap.2011.04.011
    [14] WU K, WU H, ZHANG H, ZHANG B, WEN C, HU C, LIU C, LIU Q. Enhancing levoglucosan production from waste biomass pyrolysis by Fenton pretreatment[J]. Waste Manage, 2020, 108:70-77. doi: 10.1016/j.wasman.2020.04.023
    [15] 孟鑫.生物质选择性热解制取葡聚糖类化学品的研究[D].南京: 东南大学, 2017.

    MENG Xin. Selectivity pyrolysis of biomass for chemical of levoglucosan and levoglucosenone[D]. Nanjing: Southeast University, 2017.
    [16] LIU Q, WANG S, ZHENG Y, LUO Z, CEN K. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. J Anal Appl Pyrolysis, 2008, 82(1):170-177. doi: 10.1016/j.jaap.2008.03.007
    [17] CARLSON T R, JAE J, LIN Y, TOMPSETT G A, HUBER G W. Catalytic fast pyrolysis of glucose with HZSM-5:The combined homogeneous and heterogeneous reactions[J]. J Catal, 2010, 270(1):110-124. http://www.sciencedirect.com/science/article/pii/S0021951709004217
    [18] WU J, CHANG G, LI X, LI J, GUO Q. Effects of NaOH on the catalytic pyrolysis of lignin/HZSM-5 to prepare aromatic hydrocarbons[J]. J Anal Appl Pyrolysis, 2020, 146(104775). http://www.sciencedirect.com/science/article/pii/S0165237019306242
    [19] ZHANG J, KIM K H, CHOI Y S, MOTAGAMWALA A H, DUMESIC J A, BROWN R C, SHANKS B H. Comparison of fast pyrolysis behavior of cornstover lignins isolated by different methods[J]. ACS Sustainable Chem Eng, 2017, 5(7):5657-5661. doi: 10.1021/acssuschemeng.7b01393
    [20] 欧阳新平, 谭友丹, 邱学青.木质素氧化降解制备单酚类化合物[J].燃料化学学报, 2014, 42(6):677-682. http://www.ccspublishing.org.cn/article/id/100033142

    OUYANG Xin-ping, TAN You-dan, QIU Xue-qing. Oxidative degradation of lignin for producing monophenolic compounds[J]. J Fuel Chem Technol, 2014, 42(6):677-682. http://www.ccspublishing.org.cn/article/id/100033142
    [21] YANG Q, SHI J, LIN L. Characterization of structural changes of lignin in the process of cooking of bagasse with solid alkali and active oxygen as a pretreatment for lignin conversion[J]. Energy Fuels, 2012, 26(11):6999-7004. doi: 10.1021/ef300983h
    [22] LIN X, SUI S, TAN S, JR. PITTMAN C U, SUN J, ZHANG Z. Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS[J]. Energies, 2015, 8(6):5107-5121. doi: 10.3390/en8065107
    [23] LI H, CHAI X, LIU M, DENG Y. Novel method for the determination of the methoxyl content in lignin by headspace gas chromatography[J]. J Agric Food Chem, 2012, 60(21):5307-5310. doi: 10.1021/jf300455g
    [24] MOUSAVIOUN P, DOHERTY W O S. Chemical and thermal properties of fractionated bagasse soda lignin[J]. Ind. Crop. Prod, 2010, 31(1):52-58. doi: 10.1016/j.indcrop.2009.09.001
    [25] WANG S, RU B, LIN H, SUN W, LUO Z. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood[J]. Bioresour Technol, 2015, 182:120-127. doi: 10.1016/j.biortech.2015.01.127
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  38
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-25
  • 修回日期:  2020-10-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-10-10

目录

    /

    返回文章
    返回