留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤焦表面官能团对甲烷裂解的影响

魏玲 武应全 赵建涛 谭猗生

魏玲, 武应全, 赵建涛, 谭猗生. 煤焦表面官能团对甲烷裂解的影响[J]. 燃料化学学报(中英文), 2016, 44(6): 661-667.
引用本文: 魏玲, 武应全, 赵建涛, 谭猗生. 煤焦表面官能团对甲烷裂解的影响[J]. 燃料化学学报(中英文), 2016, 44(6): 661-667.
WEI Ling, WU Ying-quan, ZHAO Jian-tao, TAN Yi-sheng. Role of coal surface functional groups in methane cracking over different chars[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 661-667.
Citation: WEI Ling, WU Ying-quan, ZHAO Jian-tao, TAN Yi-sheng. Role of coal surface functional groups in methane cracking over different chars[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 661-667.

煤焦表面官能团对甲烷裂解的影响

基金项目: 

国家自然科学基金 50628404

详细信息
  • 中图分类号: TQ544

Role of coal surface functional groups in methane cracking over different chars

More Information
  • 摘要: 采用石英管固定床反应器, 考察了1123K, CH4/N2=1:4的状态下, 煤焦表面官能团对甲烷裂解的影响。煤焦表面主要含有羟基、羰基和醚键等官能团, 分别通过氢氧化钡、苯肼和碘化氢溶液对煤焦表面进行化学处理, 除去煤焦表面相应的官能团, 研究处理后煤焦的催化活性, 得出煤焦中官能团对甲烷裂解的影响。氢氧化钡处理煤焦后, 煤焦中部分羟基被氢氧化钡消耗, 甲烷初始转化率和氢气初始收率分别为90.5%和65.2%, 说明煤焦中的羟基不利于甲烷的裂解。通过苯肼处理煤焦中羰基并使之转化, 甲烷初始转化率和氢气初始收率分别为55.4%和42.9%, 说明煤焦中的羰基对甲烷裂解有利。碘化氢处理煤焦后, 煤焦中的醚键转化成羟基, 甲烷的转化率和氢气收率都明显下降, 说明醚键的存在对甲烷裂解同样有利。随着反应时间的延长, 甲烷的转化率和氢气的收率降低, 催化剂逐渐失活。反应前后煤焦电镜扫描照片表明, 甲烷裂解生成的积炭沉积在煤焦表面, 堵塞煤焦的孔道, 煤焦的比表面积减小, 催化活性降低。
  • 图  1  实验装置示意图

    Figure  1  Schematic diagram of the experimental system

    ①: gas; ②: pressure relief valve; ③: mass flow controllers; ④: mixing chamber; ⑤: temperature controller; ⑥: quartz tube reactor; ⑦: electrically heated furnace

    图  2  1123K甲烷在不同煤焦上裂解的氢平衡

    Figure  2  Hydrogen balance over different coal chars

    ◇: Xiaolongtan liginite char; ○: char washed by barium hydroxide of equivatent-volume impregnation; ●: char washed by barium hydroxide of exceeding volume dipping; □: char washed by phenyl hydrazine of equivatent-volume impregnation; ■: char washed by phenyl hydrazine of exceeding volume dipping; △: char washed by hydrogen iodide of equivatent-volume impregnation; ▲: char washed by hydrogen iodide of exceeding volume dipping

    图  3  小龙潭煤焦以及处理煤焦的红外光谱谱图

    Figure  3  Infrared spectra of Xiaolongtan coal char and the treated chars

    a: Xiaolongtan liginite char; b: char washed by barium hydroxide; c: char washed by phenyl hydrazine; d: char washed by hydrogen iodide

    图  4  甲烷在氢氧化钡处理煤焦上裂解的转化率和氢气收率

    Figure  4  Methane conversions and hydrogen yields over different chars

    (a): conversions of methane cracking; (b): hydrogen yields of methane cracking ◇: Xiaolongtan liginite char; ○: char washed by barium hydroxide of equivatent-volume impregnation; ●: char washed by barium hydroxide of exceeding volume dipping

    图  5  甲烷在苯肼处理煤焦上裂解的转化率和氢气收率

    Figure  5  Methane conversions and hydrogen yields over different chars

    (a): conversions of methane cracking; (b): hydrogen yields of methane cracking ◇: Xiaolongtan liginite char; □: char washed by phenyl hydrazine of equivatent-volume impregnation; ■: char washed by phenyl hydrazine of exceeding volume dipping

    图  6  甲烷在碘化氢处理煤焦上裂解的转化率和氢气收率

    Figure  6  Methane conversions and hydrogen yields over different chars

    (a): conversions of methane cracking; (b): hydrogen yields of methane cracking ◇: Xiaolongtan liginite char; △: char washed by hydrogen iodide of equivatent-volume impregnation; ▲: char washed by hydrogen iodide of exceeding volume dipping

    图  7  不同煤焦反应前后的SEM照片

    Figure  7  SEM images of chars washed by different solution before (a, b, c, d) and after (a', b', c', d') being subjected to methane cracking

    (a and a': Xiaolongtan coal char, b and b': coal char washed by Ba (OH)2, c and c': coal char washed by phenyl hydrazine, d and d': coal char washed by HI)

    表  1  原煤和煤焦的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of the parent coal and its char

    SampleProximate analysis wad/% > Ultimate analysis wad/%
    M A V SCHON
    Coal24.816.338.8 1.339.71.815.21.0
    Char0.723.53.0 2.068.61.43.10.8
    下载: 导出CSV
  • [1] 许珊, 王晓来, 赵睿.甲烷催化制氢气的研究进展[J].化学进展, 2003, 15(2):141-150. http://www.cnki.com.cn/Article/CJFDTOTAL-NYYJ200502005.htm

    XU Shan, WANG Xiao-lai, ZHAO Rui. Study on the production of hydrogen from methane[J]. Prog Chem, 2003, 15(2):141-150.) http://www.cnki.com.cn/Article/CJFDTOTAL-NYYJ200502005.htm
    [2] 白宗庆, 陈皓侃, 李文, 李保庆.甲烷在活性炭上裂解制氢研究[J].燃料化学学报, 2006, 34(1):66-70. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16950.shtml

    BAI Zong-qing, CHEN Hao-kan, LI Wen, LI Bao-qing. Hydrogen production from methane pyrolytic decomposition over activated carbons[J]. J Fuel Chem Technol, 2006, 34(1):66-70.) http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16950.shtml
    [3] 白宗庆, 陈皓侃, 李文, 李保庆.流化床中甲烷在活性炭上裂解制氢研究[J].天然气化工, 2006, 31(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH200601000.htm

    BAI Zong-qing, CHEN Hao-kan, LI Wen, LI Bao-qing. Hydrogen production by methane decomposition over activated carbon in a fluidized-bed reactor[J]. Nat Gas Chem Ind, 2006, 31(1):1-4.) http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH200601000.htm
    [4] STEINBERG M. The Hy-C process (thermal decomposition of natural gas) potentially the lowest cost source of hydrogen with the least CO2 emission[J]. Energy Convers Manage, 1995, 36(6/9):791-796. https://www.researchgate.net/publication/222758081_The_Hy-C_process_thermal_decomposition_of_natural_gas_potentially_the_lowest_cost_source_of_hydrogen_with_the_least_CO2_emission
    [5] POIRIER M G, SAPUNDZHIEV C. Catalytic decomposition of natural gas to hydrogen for fuel cell applications[J]. Int J Hydrogen Energy, 1997, 22(4):429-433. doi: 10.1016/S0360-3199(96)00101-2
    [6] CHOUDHARY T V, SIVADINARAYANA C, CHUSUEI C C, KLINGHOFFER A, GOODMAN D W. Hydrogen production via catalytic decomposition of methane[J]. J Catal, 2001, 199(1):9-18. doi: 10.1006/jcat.2000.3142
    [7] 潘智勇, 沈师孔. Ni/SiO2催化剂上甲烷催化裂解制氢[J].燃料化学学报, 2003, 31(5):466-470. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16847.shtml

    PAN Zhi-yong, SHEN Shi-kong. Hydrogen production via direct cracking of methane over Ni/SiO2 catalysts[J]. J Fuel Chem Technol, 2003, 31(5):466-470.) http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16847.shtml
    [8] SERBAN M, LEWIS M A, MARSHALL C L, DOCTOR R D. Hydrogen production by direct contact pyrolysis of natural gas[J]. Energy Fuels, 2003, 17(3):705-713. doi: 10.1021/ef020271q
    [9] CHEN J L, LI Y D, LI Z Q, ZHANG X X. Production of COx-free hydrogen and nanocarbon by direct decomposition of undiluted methane on Ni-Cu-alumina catalysts[J]. App Catal A:Gen, 2004, 269(1/2):179-186. https://www.researchgate.net/publication/272409643_Direct_decomposition_of_methane_over_SBA-15_supported_Ni_Co_and_Fe_based_bimetallic_catalysts
    [10] 白宗庆, 陈皓侃, 李文, 李保庆.热重-质谱联用研究焦炭在甲烷气氛下的热行为[J].燃料化学学报, 2005, 33(4):426-430. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16589.shtml

    BAI Zong-qing, CHEN Hao-kan, LI Wen, LI Bao-qing. Study on the thermal performance of metallurgical coke under methane by TG-MS[J]. J Fuel Chem Technol, 2005, 33(4):426-430.) http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16589.shtml
    [11] MURADOV N. CO2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel[J]. Energy Fuels, 1998, 12(1):41-48. doi: 10.1021/ef9701145
    [12] MURADOV N. Hydrocarbon-based systems for CO2-free production of hydrogen//Proceeding of 13th World Hydrogen Energy Conference. Beijing, 2000:428-433.
    [13] MURADOV N. Catalysis of methane decomposition over elemental carbon[J]. Catal Commun, 2001, 2(3/4):89-94. https://www.researchgate.net/publication/222971069_Catalysis_of_methane_decomposition_over_elemental_carbon
    [14] MURADOV N. Hydrogen via methane decomposition:An application for decarbonization of fossil fuels[J]. Int J Hydrogen Energy, 2001, 26(11):1165-1175. doi: 10.1016/S0360-3199(01)00073-8
    [15] MURADOV N, VEZIROGLU T N. From hydrogen to hydrogen-carbon to hydrogen economy[J]. Int J Hydrogen Energy, 2005, 30(3):225-237. doi: 10.1016/j.ijhydene.2004.03.033
    [16] BAI Z Q, CHEN H K, LI W, LI B Q. Hydrogen production by methane decomposition over coal char[J]. Int J Hydrogen Energy, 2006, 31(7):899-905. doi: 10.1016/j.ijhydene.2005.08.001
    [17] SUN Z Q, WU J H, HAGHIGHI M, BROMLY J, NG E, WEE H L, WANG Y, ZHANG D K. Methane cracking over a bituminous coal char[J]. Energy Fuels, 2007, 21(3):1601-1605. doi: 10.1021/ef060616v
    [18] ZHANG Y, WU J H, ZHANG D K. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz[J]. Energy Fuels, 2008, 22(2):1142-1147. doi: 10.1021/ef700680d
    [19] 徐泽夕, 吴晋沪, 王洋, 张东柯.甲烷在褐煤煤焦上的裂解反应研究[J].燃料化学学报, 2009, 37(3):277-281. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17443.shtml

    XU Ze-xi, WU Jin-hu, WANG Yang, ZHANG Dong-ke. Methane craking over lignite char[J]. J Fuel Chem Technol, 2009, 37(3):277-281.) http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17443.shtml
    [20] WEI L, TAN Y S, HAN Y Z, ZHAO J T, WU J H, ZHANG D K. Hydrogen production by methane cracking over different coal chars[J]. Fuel, 2011, 90(11):3473-3479. doi: 10.1016/j.fuel.2011.06.053
    [21] 魏玲, 谭猗生, 韩怡卓, 赵建涛.煤焦中灰成分对甲烷裂解的影响[J].化工学报, 2015, 66(9):3733-3738. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201509062.htm

    WEI Ling, TAN Yi-sheng, HAN Yi-zhuo, ZHAO Jian-tao. Influence of coal char on methane cracking[J]. CIESC J, 2015, 66(9):3733-3738.) http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201509062.htm
    [22] 朱之培, 高晋生.煤化学[M].上海:上海科学技术出版社, 1984, 122-129.

    ZHU Zhi-pei, GAO Jin-sheng. Coal Chemistry[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1984, 122-129.)
    [23] 李庆钊, 林柏泉, 赵长遂, 武卫芳.基于傅里叶红外光谱的高温煤焦表面化学结构特性分析[J].中国电机工程学报, 2011, 31(32):46-52. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201132007.htm

    LI Qing-zhao, LIN Bai-quan, ZHAO Chang-sui, WU Wei-fang. Chemical structure analysis of coal char surface based on Fourier-Transform infrared spectrometer[J]. Proc CSEE, 2011, 31(32):46-52.) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201132007.htm
    [24] FIGUEIREDO J L, PEREIRA M F R, FREITAS M M A, ORFAO J J M. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37:1379-1389. doi: 10.1016/S0008-6223(98)00333-9
    [25] 孟华平.煤焦表面含氧官能团对甲烷分解反应的催化作用.太原:太原理工大学, 2008.

    MENG Hua-ping. The catalytic effect of oxygen-containing group in coal char surface on methane decomposition reaction. Taiyuan:Taiyuan University of Technology, 2008.)
    [26] 单晓梅, 朱书全, 张文辉, 李书荣, 李淑琴.氧化法改性煤基活性炭和椰壳活性炭的研究[J].中国矿业大学学报, 2003, 32(6):729-733. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200306032.htm

    SHAN Xiao-mei, ZHU Shu-quan, ZHANG Wen-hui, LI Shu-rong, LI Shu-qin. Modification surface properties of coal based and coconut shell activated carbons by oxidation[J]. J China Univ Min Technol, 2003, 32(6):729-733.) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200306032.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  60
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-15
  • 修回日期:  2016-01-21
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-06-10

目录

    /

    返回文章
    返回