留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

制备方法对AgCeY吸附剂脱硫性能的影响

李晓娟 宋华 高慧杰

李晓娟, 宋华, 高慧杰. 制备方法对AgCeY吸附剂脱硫性能的影响[J]. 燃料化学学报(中英文), 2016, 44(12): 1509-1517.
引用本文: 李晓娟, 宋华, 高慧杰. 制备方法对AgCeY吸附剂脱硫性能的影响[J]. 燃料化学学报(中英文), 2016, 44(12): 1509-1517.
LI Xiao-juan, SONG Hua, GAO Hui-jie. Effect of preparation method on desulfurization performance of AgCeY adsorbents[J]. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1509-1517.
Citation: LI Xiao-juan, SONG Hua, GAO Hui-jie. Effect of preparation method on desulfurization performance of AgCeY adsorbents[J]. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1509-1517.

制备方法对AgCeY吸附剂脱硫性能的影响

基金项目: 

国家自然科学基金 21276048

黑龙江省自然科学基金 ZD201201

黑龙江省教育厅面上项目 12541060

详细信息
  • 中图分类号: O643.361

Effect of preparation method on desulfurization performance of AgCeY adsorbents

More Information
  • 摘要: 以硅铝比为5.3的NaY分子筛为母体,分别采用微波辅助离子交换法(AgCeY-1)、水热离子交换法(AgCeY-2)和液相离子交换法(AgCeY-3)制备了AgCeY-n吸附剂,并利用XRD、BET、XPS和Py-FTIR对吸附剂进行了表征。以噻吩和苯并噻吩为模型硫化物,甲苯和环己烯为竞争吸附组分,考察了制备方法对制备得到的吸附剂脱硫性能的影响。结果表明,AgCeY-n吸附剂上Ag、Ce元素分别以Ag+、Ce4+形式存在。经微波辅助离子交换法制备得到的AgCeY-1吸附剂表面Ag+、Ce4+含量均最高,且具有最高的L酸和B酸量。AgCeY-n吸附剂对硫化物的吸附选择大小顺序为:BT>TP,竞争吸附组分对AgCeY-n吸附脱硫性能的影响顺序为:环己烯>甲苯。在所研究的制备方法中,微波辅助离子交换法所需时间最短(20 min),合成的AgCeY-1对所研究的模拟油的吸附效果均最好,且具有较好的重复使用性能。各吸附剂对TP和BT的脱除能力大小顺序为:AgCeY-1 >AgCeY-2 >AgCeY-3。
  • 图  1  NaY和AgCeY-1,AgCeY-2和AgCeY-3的XRD谱图

    Figure  1  XRD patterns of NaY,AgCeY-1,AgCeY-2 and AgCeY-3 adsorbent

    图  2  AgCeY-1、AgCeY-2和AgCeY-3吸附剂的XPS谱图

    Figure  2  XPS spectra of AgCeY-1,AgCeY-2 and AgCeY-3(a): Ag 3d; (b): Ce 3d; (c): AgCeY a: AgCeY-1; b: AgCeY-2; c: AgCeY-3

    图  3  吸附剂的Py- FTIR谱图

    Figure  3  Py-FTIR spectrum of adsorbents

    (a): Py-FTIR spectra of AgCeY-1,AgCeY-2 and AgCeY-3 (350℃) (b): Py-FTIR spectrum of AgCeY-1 adsorbent under different desorption temperatures (150,350℃)

    图  4  不同制备方法所得AgCeY吸附剂与模拟油M1的脱硫率

    Figure  4  Desulfurization rate of different adsorbents from M1

    a: 20mL model oil M1; b: 60mL model oil M1

    图  5  不同制备方法所得AgCeY 吸附剂与模拟油M2的脱硫率

    Figure  5  Desulfurization rate of different adsorbents from M2

    a: 20mL model oil M2; b: 60mL model oil M2

    图  6  不同制备方法所得AgCeY吸附剂与模拟油M3的脱硫率

    Figure  6  Desulfurization rate of different adsorbents from M3

    a: 20mL model oil M3; b: 60mL model oil M3

    表  1  各模拟油的组成

    Table  1  The composition of the model fuels

    No. Sulfur concentration c/(mg·L-1) Content c/(mg·L-1)
    TP BT toluene cyclohexene
    M1 100 100 - -
    M2 100 100 500 -
    M3 100 100 - 500
    下载: 导出CSV

    表  2  NaY和AgCeY-1、AgCeY-2和AgCeY-3吸附剂的结构性质

    Table  2  Pore structure of NaY and AgCeY-n zeolites prepared by different methods

    Sample Surface area
    A/(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Pore size
    d/nm
    NaY 620 0.36 2.33
    AgCeY-1 534 0.30 1.18
    AgCeY-2 516 0.31 1.16
    AgCeY-3 541 0.31 1.16
    下载: 导出CSV

    表  3  AgCeY-1、AgCeY-2和AgCeY-3 吸附剂的表面金属元素含量

    Table  3  Metal content on the surface of AgCeY-1,AgCeY-2 and AgCeY-3

    Sample Metal content w/%
    Ag Ce
    NaY - -
    AgCeY-1 1.87 1.24
    AgCeY-2 1.57 1.17
    AgCeY-3 1.54 1.07
    下载: 导出CSV

    表  4  吸附剂表面Lewis酸和Brønsted酸的分布

    Table  4  The content distribution of Lewis and Brønsted acid

    Sample Desorption
    temperature t/℃
    Lewis acidity
    /(μmol·g-1)
    Brønsted acidity
    /(μmol·g-1)
    Total acidity
    /(μmol·g-1)
    Lewis/total
    acidity
    AgCeY-1 150 444.9 82.0 526.9 0.84
    350 58.7 31.3 90.0 0.65
    AgCeY-2 150 436.0 68.2 504.2 0.86
    350 37.3 17.6 54.9 0.68
    AgCeY-3 150 278.5 29.9 308.4 0.90
    350 41.2 21.9 62.1 0.35
    下载: 导出CSV

    表  5  吸附模拟油M1,M2 和 M3后的AgCeY-1吸附剂再生性能

    Table  5  The regeneration of the AgCeY-1 after absorption of model oil M1,M2 and M3

    Times of
    regeneration
    Sulfur removal η /%
    M1 M2 M3
    TP BT TP BT TP BT
    0 99.9 100 84.8 99.9 80.1 99.8
    1 99.6 100 82.2 99.7 76.6 99.4
    2 90.1 99.9 79.4 99.0 74.4 98.6
    3 98.3 99.1 76.6 98.0 72.1 97.5
    4 97.0 98.6 72.2 96.2 68.2 96.6
    5 95.0 98.0 66.6 94.0 62.3 94.1
    下载: 导出CSV
  • [1] SONG H,CUI X H,SONG H L,GAO H J,LI F.Characteristic and adsorption desulfurization performance of Ag-Ce bimetal ion-exchanged Y zeolite[J].Ind Eng Chem Res,2014,53(37):14552-14557. doi: 10.1021/ie404362f
    [2] SONG C S.An overview of new approaches to deep desulfurization for ultra-clean gasoline,diesel fuel and jet fuel[J].Catal Today,2003,86:211-263. doi: 10.1016/S0920-5861(03)00412-7
    [3] XIA Y T,LI Y K,GU Y T,JIN T,YANG Q,HU J,LIU H L,WANG H L.Adsorption desulfurization by hierarchical porous organic polymer of poly-methylbenzene with metal impregnation[J].Fuel,2016,170:100-106. doi: 10.1016/j.fuel.2015.12.047
    [4] ZHAO Y W,SHEN B X,SUN H,ZHAN G X,LIU J C.Adsorption of dimethyl disulfide on ZSM-5 from methyl tert-butyl ether liquid:A study on equilibrium and kinetics[J].Fuel Process Technol,2016,145:14-19. doi: 10.1016/j.fuproc.2016.01.025
    [5] SONG H,CHANG Y X,SONG H L.Deep adsorptive desulfurization over Cu,Ce bimetal ion-exchanged Y-typed molecule sieve[J].Adsorption,2016,22:139-150. doi: 10.1007/s10450-015-9731-3
    [6] 周继红,罗一斌,宗保宁.Y型分子筛复合材料的成孔机理[J].石油炼制与化工,2012,43(1):26-31. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLH201201012.htm

    ZHOU Ji-hong,LUO Yi-bin,ZONG Bao-ning.Formation mechanism of porous molecular sieve Y composite[J].Pet Process Petrochem,2012,43(1):26-31. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLH201201012.htm
    [7] HEMANDEZ-MALDONADO A J,YANG R T.Desulfurization of liquid fuels by adsorption viaπ-complexation with Cu (I)-Y and Ag-Y zeolites[J].Ind Eng Chem Res,2003,42(1):123-129. doi: 10.1021/ie020728j
    [8] OLIVEIRA M L M,MIRANDA A A L,BARBOSA C M B M,CACALCANTE C L,AZEVEDO D C S,RODRIGUEZ-CASTELLON E.Adsorption of thiophene and toluene on NaY zeolites exchanged with Ag (I),Ni (Ⅱ) and Zn (Ⅱ)[J].Fuel,2009,88(10):1885-1892. doi: 10.1016/j.fuel.2009.04.011
    [9] SONG H,WAN X,SUN X.Preparation of AgY zeolites using microwave irradiation and study on their adsorptive desulphurisation performance[J].Can J Chem Eng,2013,91(5):915-923. doi: 10.1002/cjce.v91.5
    [10] VELU S,MA X,SONG C.Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents[J].Ind Eng Chem Res,2003,42(21):5293-5304. doi: 10.1021/ie020995p
    [11] SONG H,WAN X,DAI M,ZHANG J J,LI F,SONG H L.Deep desulfurization of model gasoline by selective adsorption over Cu-Ce bimetal ion-exchanged Y zeolite[J].Fuel Process Technol,2013,116:52-62. doi: 10.1016/j.fuproc.2013.04.017
    [12] SONG H,CHANG Y X,WAN X,DAI M,SONG H L,JIN Z S.Equilibrium,kinetic and thermodynamic studies on adsorptive desulfurization onto CuICeIVY zeolite[J].Ind Eng Chem Res,2014,53:5701-5708. doi: 10.1021/ie403177t
    [13] 王娟,张海波,张秋卓,曾辉,蔡伟民.NiCeY改性沸石吸附燃料油中二苯并噻吩的研究[J].环境工程学报,2008,2(11):1581-1584. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200811031.htm

    WANG Juan,ZHANG Hai-bo,ZHANG Qiu-zhuo,ZENG Hui,CAI Wei-min.Study on adsorption of dibenzeothiophene in fuel using NiCeY zeolite[J].Chin J Environ Eng,2008,2(11):1581-1584. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200811031.htm
    [14] SONG H,GAO H J,SONG H L,YANG G,LI X J.Effects of Si/Al ratio of ion-exchanged AgCeY zeolites on the adsorption desulfurization[J].Ind Eng Chem Res,2016,55(13):3813-3822. doi: 10.1021/acs.iecr.5b04609
    [15] 苑丹丹,宋华林,崔雪涵,高慧杰,宋华.AgCeY分子筛吸附剂的制备及性能研究[J].燃料化学学报,2015,43(5):620-627. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18632.shtml

    YUAN Dan-dan,SONG Hua-lin,CUI Xue-han,GAO Hui-jie,SONG Hua.Study on preparation and characteristics of AgCeYzeolites[J].J Fuel Chem Technol,2015,43(5):620-627. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18632.shtml
    [16] 王晓晖,卜龙利,刘海楠,张浩,孙剑宇,杨力,蔡力栋.碳化硅协同分子筛负载型催化剂微波辅助催化氧化甲苯性能[J].环境科学学报,2013,34(6):2017-2116. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201306005.htm

    WANG Xiao-hui,BO Long-li,LIU Hai-nan,ZHANG Hao,SUN Jian-yu,YANG Li,CAI Li-dong.Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene[J].Acta Sci Circumstantiae,2013,34(6):2017-2116. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201306005.htm
    [17] 程志林,晁自胜,万惠霖.微波诱导快速合成纳米NaY分子筛[J].物理化学学报,2003,19(6):487-491. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200306001.htm

    CHENG Zhi-lin,CHAO Zi-sheng,WAN Hui-lin.Nanosized NaY zeolite synthesized rapidly by microwave induction[J].Acta Phys Chim Sin,2003,19(6):487-491. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200306001.htm
    [18] 李小娟.改性Y分子筛选择性吸附燃料油深度脱硫及等离子体再生技术研究[D].浙江:浙江大学,2009.

    LI Xiao-juan.Selective adsorption of thiophenic compounds from fuel over Y zeolite-based adsorbents and regeneration by non-thermal plasma processing[D].Zhejiang:Zhejiang Univesity,2009.
    [19] ROMEO M,BAK K,FALLAH J El,NORMAND L,HILAIREET L.XPS study of the reduction of cerium dioxide[J].Surf Interface Anal,1993,20(6):508-512. doi: 10.1002/(ISSN)1096-9918
    [20] LI J C,ZENG P H,ZHAO L,REN S Y,GUO Q X,ZHAO H J,WANG B J,LIU H H,PANG X M,GAO X H,SHEN B J.Tuning of acidity in CeY catalytic cracking catalysts by controlling the migration of Ce in the ion exchange step through valence changes[J].J Catal,2015,329:441-448. doi: 10.1016/j.jcat.2015.06.012
    [21] 邵红,霍超.微波技术在催化剂制备领域的应用研究[J].化工技术与开发,2006,35(11):2-5. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHG200611000.htm

    SHAO Hong,HUO Chao.Application advances of microwave technology in preparation of catalysts[J].Technol Develop Chem Ind,2006,35(11):2-5. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHG200611000.htm
    [22] TREJDA M,TUEL A,KUJAW J,KILOS B,ZIOLEK M.Niobium rich SBA-15 materials-preparation,characterisation and catalytic activity[J].Microporous Mesoporous Mater,2008,110:271-278. doi: 10.1016/j.micromeso.2007.06.015
    [23] KALITA P,GUPTA N M,KUMAR R.Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce-Al-MCM-41 catalysts in alkylation reactions:FTIR and TPD-ammonia studies[J].J Catal,2007,245:338-347. doi: 10.1016/j.jcat.2006.10.022
    [24] GONG Y J,DOU T,KANG S J,LI Q,HU Y F.Deep desulfurization of gasoline using ion-exchange zeolites:Cu (I)-and Ag (I)-beta[J].Fuel Process Technol,2009,90:122-129. doi: 10.1016/j.fuproc.2008.08.003
    [25] YI D Z,HUANG H,MENG X,SHI L.Adsorption-desorption behavior and mechanism of dimethyl disulfide in liquid hydrocarbon streams on modified Y zeolites[J].Appl Catal B:Environ,2014,148-149:377-386. doi: 10.1016/j.apcatb.2013.11.027
    [26] SIEVERS C,LIEBERT J S,STRATMANN M M,OLINDO R,LERCHER J A.Comparison of zeolites LaX and LaY as catalysts for isobutane/2-butene alkylation[J].Appl Catal A:Gen,2008,336(1/2):89-100. https://www.researchgate.net/publication/244108235_Comparison_of_zeolites_LaX_and_LaY_as_catalysts_for_isobutane2-butene_alkylation
    [27] EMEIS C A.Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J].J Catal,1993,141:347-354. doi: 10.1006/jcat.1993.1145
    [28] EVERETT D H,POWL J C.Adsorption in slit-like and cylindrical micropores in the Henry's Law region[J].J Chem Soc Pakistan,1976,72:619-636. https://www.researchgate.net/publication/250836706_Adsorption_in_Slit-Like_Cylindrical_Micropores_in_the_Henry's_Law_Region
    [29] CHEN S G,YANG R T.Theoretical investigation of relationships between characteristic energy and pore size for adsorption in micropores[J].J Colloid Interf Sci,1996,177(2):298-306. doi: 10.1006/jcis.1996.0035
    [30] 宋丽娟,潘明雪,秦玉才,鞠秀芳,段林海,陈晓陆.NiY分子筛选择性吸附脱硫性能及作用机理[J].高等学校化学学报,2011,30(3):787-792. http://www.cnki.com.cn/Article/CJFDTOTAL-GDXH201103061.htm

    SONG Li-juan,PAN Ming-xue,QIN Yu-cai,JU Xiu-fang,DUAN Lin-hai,CHEN Xiao-lu.Selective adsorption desulfurization performance and adsorptive mechanisms of NiY zeolites[J].Chem J Chin Univ,2011,30(3):787-792. http://www.cnki.com.cn/Article/CJFDTOTAL-GDXH201103061.htm
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  22
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-23
  • 修回日期:  2016-08-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-12-10

目录

    /

    返回文章
    返回