留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

树皮体加热状态HRTEM变化特征及其热重特性研究

王绍清 陈昊 刘鹏华 沙玉明 林雨涵

王绍清, 陈昊, 刘鹏华, 沙玉明, 林雨涵. 树皮体加热状态HRTEM变化特征及其热重特性研究[J]. 燃料化学学报(中英文), 2018, 46(2): 138-144.
引用本文: 王绍清, 陈昊, 刘鹏华, 沙玉明, 林雨涵. 树皮体加热状态HRTEM变化特征及其热重特性研究[J]. 燃料化学学报(中英文), 2018, 46(2): 138-144.
WANG Shao-qing, CHEN Hao, LIU Peng-hua, SHA Yu-ming, LIN Yu-han. HRTEM image changes on heating and thermogravimetric characteristics of barkinite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 138-144.
Citation: WANG Shao-qing, CHEN Hao, LIU Peng-hua, SHA Yu-ming, LIN Yu-han. HRTEM image changes on heating and thermogravimetric characteristics of barkinite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 138-144.

树皮体加热状态HRTEM变化特征及其热重特性研究

基金项目: 

国家自然科学基金 41102097

国家自然科学基金 41472132

详细信息
  • 中图分类号: TQ530.2

HRTEM image changes on heating and thermogravimetric characteristics of barkinite

Funds: 

the National Natural Science Foundation of China 41102097

the National Natural Science Foundation of China 41472132

More Information
  • 摘要: 以中国特殊显微组分树皮体作为研究对象,并与镜质体和树皮煤进行比较,通过热重实验分析了树皮体的热行为特性,并运用原位加热透射电镜(HRTEM)研究了树皮体在线受热后其化学结构变化特征,并进一步分析了树皮体热性质特性的原因。研究表明,相比于镜质体和树皮煤,树皮体在受热过程中的失重总量和热解最大速率均高,而三个样品的热解最大速率温度接近。在350 ℃之后,树皮体和镜质体的化学结构均具有定向性,且随着温度的升高,其定向性越明显。树皮体和镜质体分别在400和450 ℃时,呈现芳香层片堆积。同一温度条件下比较发现,树皮体和镜质体化学结构中以萘、2×2和3×3条纹为主;其次是4×4和5×5条纹。相比较而言,树皮体的萘含量高于镜质体,而镜质体中的3×3、4×4和5×5条纹的含量高于树皮体。在350-500 ℃,随着温度的逐渐升高,树皮体和镜质体中的萘含量增加,在450 ℃时,其萘的含量达到最高。树皮体的热解行为特性与其加热过程中化学结构特征变化有关,尤其是萘的含量变化。
  • 图  1  样品的TGA和DTG曲线

    Figure  1  TGA and DTG curves of the samples used

    图  2  处理的树皮体HRTEM原图、矢量图和提取图

    Figure  2  HRTEM images and the corresponding skeletonized images of barkinite

    (a), (b), (c): 350 ℃; (d), (e), (f): 400 ℃; (g), (h), (i): 450 ℃; (j), (k), (l): 500 ℃

    图  3  处理的镜质体HRTEM原图、矢量图和提取图

    (a), (b), (c): 350 ℃; (d), (e), (f): 400 ℃; (g), (h), (i): 450 ℃; (j), (k), (l): 500 ℃

    Figure  3  HRTEM images and the corresponding skeletonized images of vitrinite

    图  4  样品晶格条纹长度分布特征

    Figure  4  Aromatic fringe distribution of samples used

    表  1  样品的基本性质

    Table  1  Basic characteristics of coal samples used

    Sample Ro
    w/%
    Proximate analysis
    w/%
    Ultimate analysis
    wdaf/%
    H/C
    atomic
    ratio
    Maceral
    φ/%
    Mad Ad Vdaf C H O* N St,d V Ba OL+I
    Bark coal 0.67 1.02 8.15 52.80 73.27 5.64 10.54 1.42 0.98 0.92 24 68 8
    Barkinite - 0.84 0.39 69.93 - - - - 1.01 - 3 96 1
    Vitrinite - 1.20 6.09 45.74 81.45 5.24 10.73 1.26 1.31 0.77 87 12 1
    note: Ro: the mean maximum vitrinite reflectance; M: moisture; A: ash; V: volatile matter; ad: air-dry basis; d: dry basis; daf: dry-ash-free; V: vitrinite; Ba: barkinite; I: inertinite; OL: other liptinites; *: by difference; -: no determined
    下载: 导出CSV

    表  2  样品的热重参数和部分岩石热解

    Table  2  TGA parameters analysis and Rock-Eval data of samples used

    Sample Thermogravimetric analysis Rock-Eval[25]
    tmax/
    MR/
    (%·℃-1)
    S2/
    (mg·g-1)
    S1+S2/
    (mg·g-1)
    HI/
    (mg·g-1)
    Bark coal 450 0.40 234 242 343
    Vitrinite 453 0.40 237 244 296
    Barkinite 454 1.08 461 472 611
    note: tmax: temperature of maximum volatiles loss; MR: the maximum rate of mass loss; S1: amount of free hydrocarbons exposed before pyrolysis at 300 ℃ (mg (HC)/g (rock)); S2: amount of hydrocarbons exposed by the thermal cracking during programmed temperature increments above 300 ℃ in pyrolysis (mg (HC)/g (rock)); HI: hydrogen index
    下载: 导出CSV

    表  3  HRTEM晶格条纹归属分类

    Table  3  Assignment of parallelogram-shaped aromatic fringes from the HRTEM fringe data

    Aromatic sheet Minimum values
    /nm
    Maximum values /nm Mean length
    /nm
    Grouping
    /nm
    Naphthalene 0.28 0.49 0.39 0.30-0.54
    2×2 0.49 0.71 0.60 0.55-0.74
    3×3 0.74 1.13 0.93 0.75-1.14
    4×4 0.98 1.56 1.27 1.15-1.44
    5×5 1.23 1.98 1.60 1.45-1.74
    6×6 1.47 2.41 1.94 1.75-2.04
    7×7 1.72 2.84 2.28 2.05-2.44
    8×8 1.96 3.26 2.61 2.45-2.84
    下载: 导出CSV
  • [1] HSIEH C Y. On lopinite, a new type of coal in China[J]. Bull Geol Soc China, 1933, 12(1/2):469-490. https://www.researchgate.net/publication/229844350_On_Lopinite_a_New_Type_of_Coal_in_China
    [2] 韩德馨, 任德贻, 王延斌, 金奎励, 毛鹤龄, 秦勇.中国煤岩学[M].徐州:中国矿业大学出版社, 1996, 125-135.

    HAN De-xin, REN De-yi, WANG Yan-bing, JIN Kui-li, MAO He-ling, QIN Yong. Coal Petrology of China[M]. Xuzhou:China University of Mining & Technology Press, 1996.
    [3] GUO Y T, RENTON J J, PENN J H. FTIR microspectroscopy of particular liptinite-(lopinite-) rich, late permian coals from Southern China[J]. Int J Coal Geol, 1996, 29(1):187-197. https://www.sciencedirect.com/science/article/pii/0166516295000240
    [4] WANG S Q, TANG Y G, SCHOBERT H H, MITCHELL G D, LIAO Y F, LIU Z Z. A thermal behavior study of Chinese coals with high hydrogen content[J]. Int J Coal Geol, 2010, 81:37-44. doi: 10.1016/j.coal.2009.10.012
    [5] WANG S Q, TANG Y G, SCHOBERT H H, JIANG D, SUN Y B, GUO Y N, SU Y F, YANG S P. Application and thermal properties of hydrogen-rich bark coal[J]. Fuel, 2015, 162:121-127. doi: 10.1016/j.fuel.2015.09.010
    [6] 郭亚楠, 唐跃刚, 王绍清, 李薇薇, 贾龙.树皮残植煤显微组分分离及高分辨透射电镜图像分子结构[J].煤炭学报, 2013, 38(6):1019-1024. http://www.doc88.com/p-5945271006379.html

    GUO Yan-an, TANG Yue-gang, WANG Shao-qing, LI Wei-wei, JIA Long. Maceral separation of bark liptobiolite ande molecular structure study through high resolution TEM images[J]. J China Coal Soc, 2013, 38(6):1019-1024. http://www.doc88.com/p-5945271006379.html
    [7] GB/T 1558-2001. 烟煤显微组分分类[S].

    GB/T 1558-2001. Classification of macerals for bituminous coal[S].
    [8] HOWER J C, SUǍREZ-RUIZ I, MASTALERZ M, COOK A C. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun[J]. Spectrochim Acta Part A, 2007, 67(5):1433-1437. doi: 10.1016/j.saa.2006.11.034
    [9] SUN X G. A study of chemical structure in "barkinite" using time-of-flight secondary ion mass spectrometry[J]. Int J Coal Geol, 2001, 47(1):1-8. doi: 10.1016/S0166-5162(01)00008-8
    [10] 余海洋, 孙旭光, 焦宗福.华南晚二叠世"树皮体"显微傅里叶红外光谱(Micro-FTIR)特征及意义[J].北京大学学报:自然科学版, 2004, 40(6):879-885. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201505047.htm

    YU Hai-yang, SUN Xug-uang, JIAO Zong-fu. Characterisistics and implications of micro-FT-IR spectroscopy of barkinite from upper permian coals, South China[J]. Acta Sci Nat Univ Pekin, 2004, 40(6):879-885. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201505047.htm
    [11] SUN X G. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microspectroscopy[J]. Spectrochim Acta Part A, 2005, 62(1):557-564. https://www.sciencedirect.com/science/article/pii/S1386142506006986
    [12] 吴俊, 金奎励, 汪昆华, 顾世英.南方树皮煤红外光谱特征及成烃演化规律研究[J].煤田地质与勘探, 1990, (5):29-38. http://www.cqvip.com/QK/94295X/199005/323930.html

    WU Jun, JIN Ku-li, WANG Kun-hua, GU Shi-ying. Infrared spectroscopy characteristics and forming-hydrocarbon evaluation rule for suberain coal in Southern China[J]. Coal Geol Explor, 1990, (5):29-38. http://www.cqvip.com/QK/94295X/199005/323930.html
    [13] 余海洋, 孙旭光.江西乐平晚二叠世煤成烃机理红外光谱研究[J].光谱学与光谱分析, 2007, 27(5):858-862. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx200705007

    YU Hai-yang, SUN Xu-guang. Research on hydrocarbon generation mechanism of upper permin coals from Leping, Jiangxi, based on ifrared spectroscopy[J]. Spectr Spectr Anal, 2007, 27(5):858-862. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx200705007
    [14] WANG S Q, TANG Y G, SCHOBERT H H, JIANG D, GUO X, HUANG F, GUO Y N, SU Y F. Chemical compositional and structural characteristics of late permian bark coals from southern China[J]. Fuel, 2014, 126:116-121. https://www.sciencedirect.com/science/article/pii/S0016236114001598
    [15] 郭绍辉, 李术元, 秦匡宗.用钌离子催化氧化法研究干酪根及其显微组分的化学结构[J].石油大学学报(自然科学版), 2000, 24(3):54-57. http://www.doc88.com/p-58966651773.html

    GUO Shao-hui, LI Shu-yuan, QIN Kuang-zong. Structual characterization of kerogen and macerals by ruthenium ion catalyzed oxidation[J]. J Univ Pet, China, Ed Nat Sci, 2000, 24(3):54-57. http://www.doc88.com/p-58966651773.html
    [16] 焦堃, 姚素平, 张科, 胡文瑄.树皮煤的原子力显微镜研究[J].地质论评, 2012, 58(4):775-782. http://d.old.wanfangdata.com.cn/Periodical/dzlp201204018

    JIAO Kun, YAO Su-ping, ZHANG Ke, HU Wen-xuan. An atomic force microscopy study on "barkinite" liptobiolith[J]. Geol Rev, 2012, 58(4):775-782. http://d.old.wanfangdata.com.cn/Periodical/dzlp201204018
    [17] WANG S Q, LIU S M, SUN Y B, JIANG D, ZHANG X M. Investigation of coal components of late permian different ranks bark coal using AFM and micro-FTIR[J]. Fuel, 2017, 187:51-57. doi: 10.1016/j.fuel.2016.09.049
    [18] SHARAM A, KYOTANI T, TOMITA A. A new quantitative approach for microstructural analysis of coal char using HRTEM images[J]. Fuel, 1999; 78:1203-1212. doi: 10.1016/S0016-2361(99)00046-0
    [19] SHARAM A, KYOTANI T, TOMITA A. Direct observation of raw coals in lattice fringe mode using high-resolution transmission electron microscopy[J]. Energy Fuels, 2000, 14:1219-1225. doi: 10.1021/ef0000936
    [20] SHARAM A, KYOTANI T, TOMITA A. Quantitive evaluation of structural transformation in raw coals on heat-treatment using HRTEM technique[J]. Fuel, 2001, 80:1467-1473.
    [21] MATHEWS J P, JONES A D, PAPPANO P J, HURT R, SCHOBERT H H. New insights into coal structure from the combination of HRTEM and laser desorption ionization mass spectrometry[C]//Proceedings of the 11th Int. Conf. on coal Sci: Exploring the horizons of coal. San Francisco, CA: 2001.
    [22] MATHEWS J P, FERNANDEZ-ALSO V, JONES A D, SCHOBERT H H. Determining the molecular weight distribution of pocahontas No. 3 low-volatile bituminous coal utilizing HRTEM and laser desorption ionization mass spectra data[J]. Fuel 2010, 89:1461-1469. https://www.researchgate.net/publication/231426112_Molecular_Size_and_Shape_of_Some_Primary_Degradation_Products_of_a_Bituminous_Coal
    [23] MATHEWS J P, SHARAM A. The structure alignment of coal and the analogous case of argonne upper freeport coal[J]. Fuel, 2012, 95:19-24. doi: 10.1016/j.fuel.2011.12.046
    [24] VAN NIEKERK D, MATHEWS J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel, 2010, 89:73-82. doi: 10.1016/j.fuel.2009.07.020
    [25] 黄帆. 乐平煤中树皮体的有机地球化学特征研究[D]. 北京: 中国矿业大学(北京), 2015.

    HUANG Fan. Organic geochemical characteristics of barkinite in Leping coal[D]. Beijing: China university of Mining & Technology (Beijing), 2015.
    [26] STACH E, MACHKOWSKY M T H, TEICHMVLLER M, TAYLOR G H, CHANDRA D, TEICHMVLLER R. Stach's Textbook of Coal Petrology[M]. Berlin, Stuttgart:Gebrüder Borntraeger, 1982.
    [27] WANG S Q, TANG Y G, SCHOBERT H H, GUO Y N, GAO W C, LU X K. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China[J]. J Anal Appl Pyrolysis, 2013, 100:75-80. doi: 10.1016/j.jaap.2012.11.021
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  32
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-09
  • 修回日期:  2017-10-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-02-10

目录

    /

    返回文章
    返回