留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介孔材料Co-MCM-41的合成及其吸附脱除各种碱性氮化物

洪新 李云赫 赵永华 唐克

洪新, 李云赫, 赵永华, 唐克. 介孔材料Co-MCM-41的合成及其吸附脱除各种碱性氮化物[J]. 燃料化学学报(中英文), 2018, 46(2): 243-250.
引用本文: 洪新, 李云赫, 赵永华, 唐克. 介孔材料Co-MCM-41的合成及其吸附脱除各种碱性氮化物[J]. 燃料化学学报(中英文), 2018, 46(2): 243-250.
HONG Xin, LI Yun-he, ZHAO Yong-hua, TANG Ke. Preparation of mesoporous Co-MCM-41 and its performance in adsorption removal of various basic nitrogen compounds[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 243-250.
Citation: HONG Xin, LI Yun-he, ZHAO Yong-hua, TANG Ke. Preparation of mesoporous Co-MCM-41 and its performance in adsorption removal of various basic nitrogen compounds[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 243-250.

介孔材料Co-MCM-41的合成及其吸附脱除各种碱性氮化物

基金项目: 

辽宁省自然科学基金 2014020113

广西高校北部湾石油天然气资源有效利用重点实验室2016年度开放课题 2016KLOG04

详细信息
  • 中图分类号: O647

Preparation of mesoporous Co-MCM-41 and its performance in adsorption removal of various basic nitrogen compounds

Funds: 

the Liaoning Provincial Natural Science Foundation of China 2014020113

Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization 2016KLOG04

More Information
  • 摘要: 采用水热法合成了MCM-41和不同Co/Si物质的量比的Co-MCM-41介孔材料, 并采用XRD、FT-IR和低温氮气吸附-脱附方法对样品进行了表征。FT-IR及XRD表征结果说明, Co原子已经进入了介孔材料的孔壁。合成的MCM-41及Co/Si(物质的量比)为0.18以下的Co-MCM-41都具有六方有序排列的介孔结构。当加入的Co/Si(物质的量比)为0.22时, 样品的(100)峰完全消失, 不具备六方有序排列的介孔结构, 说明以硝酸钴为钴源合成Co-MCM-41的最大Co加入量为Co/Si(物质的量比)为0.18左右。与MCM-41相比, 各Co-MCM-41样品的XRD(100)峰随着Co加入量的增加逐渐变宽变弱, 比表面积和孔容变小, 平均孔径增大。当加入的Co/Si物质的量比大于0.06时, Co-MCM-41的介孔孔道中存在少量聚集态的Co3O4。利用合成的Co-MCM-41吸附脱除氮含量为1737.35 μg/g模拟燃料中的碱性氮化物喹啉、苯胺或吡啶, 结果表明, 所有样品的吸附脱氮效果顺序为苯胺>吡啶>喹啉。Co-MCM-41(0.06)的吸附容量和氮脱除率明显要高于其他样品, 对苯胺、吡啶和喹啉的吸附容量分别为42.17、35.66和29.18 mg(N)/g, 去除率分别为82.38%、73.53%和61.11%。添加到模拟燃料中的芳烃化合物萘、苯或甲苯对其吸附脱氮没有影响, 表明介孔材料Co-MCM-41对各种含氮化合物的吸附主要是N原子与Co的配位络合吸附, 而不是π-π络合作用。采用焙烧或乙醇溶剂洗涤再生后的Co-MCM-41(0.06)恢复了吸附脱氮能力, 说明其具有较好的再生性能。
  • 图  1  MCM-41及Co-MCM-41的小角XRD谱图

    Figure  1  Small angle XRD patterns of MCM-41 and Co-MCM-41

    图  2  MCM-41及Co-MCM-41的N2吸附-脱附等温线和BJH孔径分布曲线

    Figure  2  Adsorption-desorption isotherms and BJH pore size distribution of MCM-41 and Co-MCM-41

    图  3  MCM-41及Co-MCM-41的红外光谱谱图

    Figure  3  FT-IR spectra of MCM-41 and Co-MCM-41

    图  4  MCM-41及Co-MCM-41的广角XRD谱图

    Figure  4  Wide-angle XRD patterns of MCM-41 and Co-MCM-41

    图  5  不同Co加入量的Co-MCM-41脱除模拟燃料中碱氮的剩余含量及氮吸附容量

    Figure  5  Absorption capacity and remained basic nitrogen content of model fuel treated by Co-MCM-41

    图  6  结构优化后的苯胺、吡啶和喹啉分子

    Figure  6  Optimized structures of aniline, pyridine and quinoline molecules

    图  7  共存芳香化合物对Co-MCM-41(0.06)吸附脱氮影响

    Figure  7  Effects of aromatic compounds on the removal of basic nitrogen containing compounds over Co-MCM-41(0.06)

    图  8  再生对Co-MCM-41(0.06)吸附脱氮的影响

    Figure  8  Effects of regeneration method on the removal of basic nitrogen containing compounds over Co-MCM-41(0.06)

    表  1  MCM-41和Co-MCM-41的孔容、比表面积及平均孔径

    Table  1  Total pore volumes, surface areas and average pore diameter of MCM-41 and Co-MCM-41

    MCM-41 Co-MCM-41
    (0.02)
    Co-MCM-41
    (0.06)
    Co-MCM-41
    (0.1)
    Co-MCM-41
    (0.14)
    Co-MCM-41
    (0.18)
    2θ/(°)(100) 2.3082 2.3065 2.1804 2.2203 2.2686 2.2321
    d100/nm 3.8230 3.8257 4.0470 3.9743 3.8897 3.9533
    a0/nm 4.4145 4.4177 4.6732 4.5892 4.4915 4.5650
    Total pore volume v/(cm3·g-1) 0.8875 0.7756 0.7872 0.7452 0.8267 0.8021
    ABET/(m2·g-1) 983 802 868 812 831 796
    Average pore diameter d/nm 3.11 3.18 3.22 3.16 3.29 3.37
    note:2d100sinθ=; ${a_0} = \frac{{2{d_{100}}}}{{\sqrt 3 }}$
    下载: 导出CSV
  • [1] 朱丽宁. 一季度全国机动车保有量突破3亿[N]. 人民公安报·交通安全周刊, 2017年4月18日, 第001版.

    ZHU Li-ning. The number of national vehicle has exceed 300 million[N]. China Police Daily Traffic Safety Weekly, 2017-4-18(001).
    [2] 肃宁, 杨一帆.我国成品油消费增速放缓[J].中国石油企业, 2017, (3):70-72. http://d.old.wanfangdata.com.cn/Periodical/zgsyqy201703014

    SU Ning, YANG Yi-fan.Oil products' consumption in China will mean slower growth remain slow[J].China Pet Enterprise, 2017, (3):70-72. http://d.old.wanfangdata.com.cn/Periodical/zgsyqy201703014
    [3] 范武波, 陈军辉, 汪汀, 刘思宇, 钱骏, 叶宏.机动车尾气危害及对策研究[J].四川环境, 2015, 34(6):65-69. http://d.old.wanfangdata.com.cn/Periodical/schj201506013

    FAN Wu-bo, CHEN Jun-hui, WANG Ting, LIU Si-yu, QIAN Jun, YE Hong.Study on negative effects of vehicle emissions and countermeasures[J].Sichuan Environ, 2015, 34(6):65-69. http://d.old.wanfangdata.com.cn/Periodical/schj201506013
    [4] 庞海全, 李艳芳, 韩冬云, 金阳, 乔海燕, 曹祖宾.烷基化法脱除模拟柴油中氮化物的研究[J].精细石油化工, 2017, 34(2):67-70. http://d.old.wanfangdata.com.cn/Periodical/jxsyhg201702016

    PANG Hai-quan, LI Yan-fang, HAN Dong-yun, JIN Yang, QIAO Hai-yan, CAO Zu-bin.Research on removing nitrogen compounds from model diesel oil by alkylation method[J].Spec Petrochem, 2017, 34(2):67-70. http://d.old.wanfangdata.com.cn/Periodical/jxsyhg201702016
    [5] TAO X, ZHOU Y, WEI Q, DING S, ZHOU W.Inhibition effects of nitrogen compounds on deep hydrodesulfurization of straight-run gas oil over a NiW/Al2O3 catalyst[J].Fuel, 2017, 188:401-409. doi: 10.1016/j.fuel.2016.09.055
    [6] HAN X, LIN H F, ZHENG Y.Adsorptive denitrogenation and desulfurization of diesel using activated carbons oxidized by (NH4)S2O8 under mild conditions[J].Can J Chem Eng, 2015, 93(3):538-548. doi: 10.1002/cjce.v93.3
    [7] IMTEAZ A, SUNG H J.Remarkable improvement in adsorptive denitrogenation of model fossil fuels with CuCl/activated carbon, prepared under ambient condition[J].Chem Eng J, 2015, 279:327-334. doi: 10.1016/j.cej.2015.05.035
    [8] BAE Y S, KIN M B, LEE H J, LEE C H, RYU J W.Adsorptive denitrogenation of light gas oil by silica-zirconia cogel[J].AIChE J, 2010, 52(2):510-521. doi: 10.1002/aic.10642/full
    [9] MUSHRUSH G W, QUINTANA M A, BAUSERMAN J W, WILLAUER H D.Post refining removal of organic nitrogen compounds from diesel fuels to improve environmental quality[J].J Environ Sci Health A, 2011, 46(2):176-180. doi: 10.1080/10934529.2011.532433
    [10] SEO P W, AHMED I, JHUNG S H.Adsorptive removal of nitrogen containing compounds from a model fuel using a metal organic framework having a free carboxylic acid group[J].Chem Eng J, 2016, 299:236-243. doi: 10.1016/j.cej.2016.04.060
    [11] 王朝阳, 李钢, 孙志国.磺酸功能化金属-有机骨架吸附脱氮性能[J].物理化学学报, 2013, 29(11):2422-2428. doi: 10.3866/PKU.WHXB201309021

    WANG Zhao-yang, LI Gang, SUN Zhi-guo.Denitrogenation through adsorption to sulfonated metal-organic frameworks[J].Acta Phys.-Chim Sin, 2013, 29(11):2422-2428. doi: 10.3866/PKU.WHXB201309021
    [12] 洪新, 唐克.NaY分子筛的改性及吸附脱氮性能[J].燃料化学学报, 2015, 43(2):1-7. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18577.shtml

    HONG Xin, TANG Ke.Modification and adsorptive denitrification of NaY molecular sieve[J].J Fuel Chem Technol, 2015, 43(2):1-7. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18577.shtml
    [13] HERNÁNDEZ M A J, YANG R T.Denitrogenation of transportation fuels by zeolites at ambient temperature and pressure[J].Angew Chem Int Ed, 2004, 43(8):1004-1006. doi: 10.1002/(ISSN)1521-3773
    [14] 朱金柱, 沈健.SBA-15吸附脱除油品中的碱性氮化物[J].石油学报(石油加工), 2012, 40(11):566-570. http://d.old.wanfangdata.com.cn/Periodical/syxb-syjg201204007

    ZHU Jin-zhu, SHEN Jian.Adsorption of Basic Nitrogen Compounds from Oil by SBA-15 Zeolite[J].Acta Pet Sin (Pet Process Sect), 2012, 40(11):566-570. http://d.old.wanfangdata.com.cn/Periodical/syxb-syjg201204007
    [15] SYED A S, LIN H F, ZHENG Y.Adsorptive denitrogenation and desulfurization of diesel fractions by mesoporous SBA15-supported nickel(Ⅱ) phosphide synthesized through a novel approach of urea matrix combustion[J].Ind Eng Chem Res, 2012, 51(44):14503-14510. doi: 10.1021/ie3015044
    [16] ZHANG H, SONG H Y.Study of adsorptive denitrogenation of diesel fuel over mesoporous molecular sieves based on breakthrough curves[J].Ind Eng Chem Res, 2012, 51(50):16059-16065. https://www.researchgate.net/publication/263956669_Study_of_Adsorptive_Denitrogenation_of_Diesel_Fuel_over_Mesoporous_Molecular_Sieves_Based_on_Breakthrough_Curves
    [17] TANG K, HONG X.Preparation and characterization of Co-MCM-41 and its adsorption removing basic nitrogen compounds from FCC diesel oil[J].Energy Fuels, 2016, 30(6):4619-4624. doi: 10.1021/acs.energyfuels.6b00427
    [18] 洪新, 唐克.杂原子介孔Co-MCM-41分子筛的制备及其吸附脱氮性能[J].燃料化学学报, 2015, 43(6):720-727. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18646.shtml

    HONG Xin, TANG Ke.Preparation and adsorption denitrification of heteroatoms mesoporous molecular sieve Co-MCM-41[J].J Fuel Chem Technol, 2015, 43(6):720-727. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18646.shtml
    [19] 洪新, 唐克, 丁世洪.杂原子介孔Co-MCM-41分子筛的制备及其柴油深度吸附脱氮性能[J].燃料化学学报, 2016, 44(1):99-105. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18767.shtml

    HONG Xin, TANG Ke.DING Shi-hong.Preparation and deep adsorption denitrification from diesel oil of heteroatoms mesoporous molecular sieve Co-MCM-41[J].J Fuel Chem Technol, 2016, 44(1):99-105. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18767.shtml
    [20] KARTHIK M, TRIPATHI A K, GUPTA N M, VINU A, HARTMANN M, PALANICHAMY M, MURUGESAN V.Characteriaztion of Co, Al-MCM-41 and its activity in the t-butylation of phenol using isobutanol[J].Appl Catal A:Gen, 2004, 268(1):139-149. http://www.academia.edu/6609594/Characterization_of_Co_Al-MCM-41_and_its_activity_in_the_t-butylation_of_phenol_using_isobutanol
    [21] 孙庆林, 杨渊, 张颖杰, 李莎, 孙鹏, 孔岩.高钴含量MCM-41合成、催化性能及钴形态的化学分析方法[J].无机化学学报, 2011, 27(12):2346-2352. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201112004

    SUN Qing-lin, YANG Yuan, ZHANG Ying-jie, LI Sha, SUN Peng, KONG Yan.Synthesis, catalytic activity and chemical analysis method for Co-MCM-41 with high cobalt content[J].Chin J Inorg Chem, 2011, 27(12):2346-2352. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201112004
    [22] PARVULESCU V, SU B L I.Cobalt or nickel substituted MCM-41 molecular sieves for oxidation of hydrocarbons[J].Catal Today, 2001, 69(1/4):315-322. https://www.researchgate.net/publication/223779525_Iron_cobalt_or_nickel_substituted_MCM-41_molecular_sieves_for_oxidation_of_hydrocarbons
    [23] LI Y N, GUO X H, ZHOU G D, HE X, BI Y L, LI W X, CHENG T X, WU T H, ZHEN K J.Estimation of consecutive and parallel reactions during ethane dehydrogenation with carbon dioxide over Co-MCM-41[J].Pol J Chem, 2005, 79(8):1357-1364. http://www.refdoc.fr/Detailnotice?cpsidt=17071008
    [24] ANDRÉS A G B, MA G A, MA E R J, MARCELO N, M I O, KARIM S.Effect of the synthesis method on Co-catalysits based on MCM-41 for the fischer-tropsch reaction[J].Top Catal, 2011, 54(1/4):190-200. https://www.researchgate.net/profile/Karim_Sapag/publication/226873621_Effect_of_the_Synthesis_Method_on_Co-catalysts_Based_on_MCM-41_for_the_Fischer-Tropsch_Reaction/links/00b7d537e1f6c618ed000000/Effect-of-the-Synthesis-Method-on-Co-catalysts-Based-on-MCM-41-for-the-Fischer-Tropsch-Reaction.pdf
    [25] 李亚男, 郭晓红, 周广栋, 毕颖丽, 李文兴, 程铁欣, 吴通好, 甄开吉.Co-MCM-41催化剂上临CO2-乙烷脱氢反应的研究[J].高等学校化学学报, 2005, 26(6):1122-1125. http://www.whxb.pku.edu.cn/CN/abstract/abstract25734.shtml

    LI Ya-nan, GUO Xiao-hong, ZHOU Guang-dong, BI Ying-li, LI Wen-xing, CHENG Tie-xin, WU Tong-hao, ZHEN Kai-ji.CO2-dehydrogenation of ethane over Co-MCM-41 catalyst[J].Chem J Chin Univ, 2005, 26(6):1122-1125. http://www.whxb.pku.edu.cn/CN/abstract/abstract25734.shtml
    [26] ÁGNES S, MARGARITA P, CHRISTO M.Catalytic activity of Co/MCM-41 and Co/SBA-15 materials in toluene oxidation[J].J Mater Sci, 2009, 44(24):6710-6716. doi: 10.1007/s10853-009-3600-y
    [27] 汤清虎, 赵培真, 张庆红, 王野.Co-MCM-41的表征及其催化苯乙烯环氧化性能[J].催化学报, 2005, 26(11):1031-1036. doi: 10.3321/j.issn:0253-9837.2005.11.021

    TANG Qing-hu, ZHAO Pei-zhen, ZHANG Qing-hong, WANG Ye.Characterization and catalytic performance of Co-MCM-41 for styrene epoxidation[J].Chin J Catal, 2005, 26(11):1031-1036. doi: 10.3321/j.issn:0253-9837.2005.11.021
    [28] JIANG T S, SHEN W, ZHAO Q, LI M, CHU J Y, YIN H B.Characterization of CoMCM-41 mesoporous molecular sieves obtained by the microwave irradiation method[J].J Solid State Chem, 2008, 181(9):2298-2305. doi: 10.1016/j.jssc.2008.05.010
    [29] 张燕, 李湘祁, 陈琼霞, 汤德平.微波法合成有序Co-MCM-41介孔分子筛[J].化工时刊, 2008, 22(2):12-15. http://d.old.wanfangdata.com.cn/Periodical/hgsk200802004

    ZHANG Yan, LI Xiang-qi, CHEN Qiong-xia, TANG De-ping.Microwave synthesis of ordered mesoporous Co-MCM-41[J].Chem Ind Time, 2008, 22(2):12-15. http://d.old.wanfangdata.com.cn/Periodical/hgsk200802004
    [30] SHRIKANT S B, SINGH A P.Characterization and catalytic activity of cobalt containing MCM-41 prepared by direct hydrothermal, grafting and immobilization methods[J].J Mol Catal A:Chem, 2007, 266(1):118-130. https://www.sciencedirect.com/science/article/pii/S1381116906012349
    [31] GALACHO C, CARROTT M M L R, CARROTT P J M.Structural and catalytic properties of Ti-MCM-41 synthesised at room temperature up to high Ti content[J].Microporous Mesoporous Mater, 2007, 100(1/3):312-321. https://www.sciencedirect.com/science/article/pii/S1387181106005154
    [32] CHEN Y W, LIN H Y.Characteristics of Ti-MCM-41 and its catalytic properties in oxidation of benzene[J].J Porous Mat, 2002, 9(3):175-184. doi: 10.1023/A:1020982700613
    [33] CHEN Y W, LU Y H.Characteristics of V-MCM-41 and its catalytic properties in oxidation of benzene[J].Ind Eng Chem Res, 1999, 38(5):1893-1903. doi: 10.1021/ie980665y
    [34] LEE D S, LIU T K.Characterization of V-MCM-41 mesoporous materials[J].J Sol-Gel Sci Technol, 2002, 24(1):69-80. doi: 10.1023/A:1015165600804
    [35] 赵谦, 胡晓笑, 张蓉仙, 李梅, 姜廷顺.Co-MCM-41介孔分子筛的水热合成与稳定性[J].中国有色金属学报, 2009, 19(1):189-194. doi: 10.3321/j.issn:1004-0609.2009.01.030

    ZHAO Qian, HU Xiao-xiao, ZHANG Rong-xian, LI Mei, JIANG Ting-shun.Stability and hydrothermal synthesis of Co-MCM-41 mesoporous molecular sieves[J].Chin J Nonferrous Met, 2009, 19(1):189-194. doi: 10.3321/j.issn:1004-0609.2009.01.030
    [36] ZHENG J, CHU W, ZHANG H, JIANG C F, DAI X Y.CO oxidation over Co3O4/SiO2 catalysts:Effects of porous structure of silica and catalyst calcination temperature[J].J Nat Gas Chem, 2010, 19(6):583-588. doi: 10.1016/S1003-9953(09)60119-5
    [37] VARGHESE S, CUTRUFELLO M G, ROMBI E, CANNAS C, MONACI R, FERINO I.CO oxidation and preferential oxidation of CO in the presence of hydrogen over SBA-15-templated CuO-Co3O4 catalysts[J].Appl Catal A:Gen, 2012, 443/444(41):161-170. doi: 10.1081/CR-100104386?scroll=top&needAccess=true
    [38] 李亚男. 掺杂过渡金属的MCM-41介孔分分子筛的制备、表征及其对CO2乙烷氧化脱氢制乙烯的研究[D]. 长春: 吉林大学, 2006.

    LI Ya-nan. Synthesis, characterization and catalytic activity of Me-MCM-41 for oxidative dehydrogenation of ethane to ethylene with CO2[D]. Changchun: Jilin University, 2006.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  82
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-09
  • 修回日期:  2017-11-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-02-10

目录

    /

    返回文章
    返回