留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ce金属改性对Cu-SAPO-34催化剂水热稳定性能的影响

毛静雯 徐斌 胡宜康 张昌远 孟慧敏

毛静雯, 徐斌, 胡宜康, 张昌远, 孟慧敏. Ce金属改性对Cu-SAPO-34催化剂水热稳定性能的影响[J]. 燃料化学学报(中英文), 2020, 48(10): 1208-1215.
引用本文: 毛静雯, 徐斌, 胡宜康, 张昌远, 孟慧敏. Ce金属改性对Cu-SAPO-34催化剂水热稳定性能的影响[J]. 燃料化学学报(中英文), 2020, 48(10): 1208-1215.
MAO Jing-wen, XU Bin, HU Yi-kang, ZHANG Chang-yuan, MENG Hui-min. Effect of Ce metal modification on the hydrothermal stability of Cu-SAPO-34 catalyst[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1208-1215.
Citation: MAO Jing-wen, XU Bin, HU Yi-kang, ZHANG Chang-yuan, MENG Hui-min. Effect of Ce metal modification on the hydrothermal stability of Cu-SAPO-34 catalyst[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1208-1215.

Ce金属改性对Cu-SAPO-34催化剂水热稳定性能的影响

基金项目: 

国家重点研发计划"新型节能环保农用发动机开发" 2106YFD0700700

详细信息
  • 中图分类号: TK429;X701

Effect of Ce metal modification on the hydrothermal stability of Cu-SAPO-34 catalyst

Funds: 

National Key Research and Development Program "Development of New Energy-saving and Environmentally Friendly Agricultural Engines 2106YFD0700700

More Information
  • 摘要: 采用浸渍法制备系列铜铈复合氧化物分子筛催化剂(Cu-Ce/SAPO-34),探讨了Ce负载量对Cu/SAPO-34催化剂的水热稳定性的影响,通过XRD、SEM、H2-TPR、XPS和NH3-TPD等表征手段分析不同催化剂活性和稳定性差异的原因。研究表明,750℃水热老化未造成Cu-Ce/SAPO-34催化剂菱沸石(chabazite,CHA)骨架坍塌,但破坏了部分孔结构和酸性位点,使催化剂表面结晶度下降。水热老化促使催化剂晶格发生拉伸畸变,使Cu2+迁移到催化剂表面,Cu2+和Ce4+团簇形成CuO和CeO2,造成催化剂的Cu活性物种减少和氧空穴浓度降低,所以Cu-Ce/SAPO-34的NH3选择性催化还原(NH3-Selective Catalytic Reduction,NH3-SCR)性能下降。掺杂Ce能提高Cu/SAPO-34催化剂表面的Cu2+和Cu+活性物种量,减少Cu物种团簇形成CuO,改善催化剂表面活性Cu物种分布性。提高Ce的负载量能稳固Cu-Ce/SAPO-34催化剂的结构,使中、弱强度酸位点得以维持,从而提高其水热稳定性。结果表明,在研究的系列Cu-Ce/SAPO-34催化剂中,Cu/Ce质量比为4:5时具有最佳的水热稳定性。
  • 图  1  Cu-Ce/SAPO-34催化剂的NOx转化率

    Figure  1  NOx conversion rate of Cu-Ce/SAPO-34 catalysts

    (a): fresh catalysts; (b): after 750 ℃ hydrothermal aging

    图  2  Cu-Ce/SAPO-34催化剂XRD谱图

    Figure  2  XRD patterns of Cu-Ce/SAPO-34 catalyst

    a: 4%Cu/SAPO-34; b: 4%Cu/SAPO-34-750 ℃; c: Cu:Ce(4:1)/SAPO-34-750 ℃; d: Cu:Ce(4:3)/SAPO-34-750 ℃; e: Cu:Ce(4:5)/SAPO-34-750 ℃

    图  3  Cu-Ce/SAPO-34催化剂的SEM照片

    Figure  3  SEM images of Cu-Ce/SAPO-34 catalyst

    图  4  Cu-Ce/SAPO-34催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of Cu-Ce/SAPO-34 catalyst

    a: 4%Cu/SAPO-34; b: 4%Cu/SAPO-34-750 ℃; c: Cu:Ce(4:1)/SAPO-34-750 ℃; d: Cu:Ce(4:3)/SAPO-34-750 ℃; e: Cu:Ce(4:5)/SAPO-34-750 ℃

    图  5  Cu/SAPO-34和Cu-Ce/SAPO-34催化剂的XPS谱图

    Figure  5  XPS spectra of Cu/SAPO-34 and Cu-Ce/SAPO-34 catalysts

    a: 4%Cu/SAPO-34; b: Cu:Ce(4:5)/SAPO-34

    图  6  750 ℃水热老化前后Cu:Ce(4:5)/SAPO-34催化剂的XPS谱图

    Figure  6  XPS spectra of Cu:Ce(4:5)/SAPO-34 catalyst before and after 750℃ hydrothermal aging

    a: Cu:Ce(4:5)/SAPO-34-750 ℃; b: Cu:Ce(4:5)/SAPO-34

    图  7  Cu-Ce/SAPO-34的NH3-TPD谱图

    Figure  7  NH3-TPD profiles of Cu-Ce/SAPO-34

    a: 4%Cu/SAPO-34; b: 4%Cu/SAPO-34-750 ℃; c: Cu:Ce(4:1)/SAPO-34-750 ℃; d: Cu:Ce(4:3)/SAPO-34-750 ℃; e: Cu:Ce(4:5)/SAPO-34-750 ℃

    表  1  Cu-Ce/SAPO-34和Cu/SAPO-34催化剂表面元素的含量

    Table  1  Content of surface elements of Cu-Ce/SAPO-34 and Cu/SAPO-34 catalysts

    Catalyst Atomic content w/%   Relative content w/%
    Cu Ce Si Al P   Cu2+ Cu+ Ce3+ Ce4+
    4%Cu/SAPO-341.690.0014.3626.8814.69 23.9676.04--
    Cu:Ce(4:5)/SAPO-342.453.297.7727.9316.05 24.1775.8343.8856.12
    Cu:Ce(4:5)/SAPO-34-750 ℃2.874.535.7129.4715.68 37.6462.3665.5834.42
    下载: 导出CSV
  • [1] KWAK J H, TRAN D, BURTON S D, SZANYI J, LEE J H, PEDEN C H F. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites[J]. J Catal, 2012, 287:203-209. doi: 10.1016/j.jcat.2011.12.025
    [2] SCHMIEG S J, OH S H, KIM C H, BROEN D B, LEE J H, PEDEN C H F, KIM D H. Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction[J]. Catal Today, 2012, 184:252-161. doi: 10.1016/j.cattod.2011.10.034
    [3] KIM Y J, LEE J K, MIN K M, HONG S B, NAM I S, CHO B K. Hydrothermal stability of CuSSZ13 for reducing NOx by NH3[J]. J Catal, 2014, 311:447-457. doi: 10.1016/j.jcat.2013.12.012
    [4] DOU B J, LV G, WANG C, HAO Q L, HUI K S. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chem Eng J, 2015, 270:549-556. doi: 10.1016/j.cej.2015.02.004
    [5] LI X H, ZHAO Y N, ZHAO H W, LIU M K, MA Y H, YONG X, CHEN H, LI Y D. The Cu migration of Cu-SAPO-34 catalyst for ammonia selective catalytic reduction of NOx during high temperature hydrothermal aging treatment[J]. Catal Today, 2019, 327:126-133. doi: 10.1016/j.cattod.2018.05.029
    [6] XIANG X, CAO Y, SUN L J, WU P F, CAO L, XU S T, TIAN P, LIU Z M. Improving the low-temperature hydrothermal stability of Cu-SAPO-34 by the addition of Ag for ammonia selective catalytic reduction of NOx[J]. Appl Catal A:Gen, 2018, 551:79-87. doi: 10.1016/j.apcata.2017.12.001
    [7] WANG D, JANGJOU Y, LIU Y, SHARMA M K, LUO J Y, LI J H, KAMASAMUDRAM K, EPLING W S. A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Appl Catal B:Environ, 2015, 165:438-445. doi: 10.1016/j.apcatb.2014.10.020
    [8] PETKOVICH N D, RUDISILL S G, VENSTROM L J, BOMAN D B, DAVIDSON J H, STEIN A. Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity[J]. J Phys Chem C, 2011, 115(43):21022-21033. doi: 10.1021/jp2071315
    [9] BAIDYA T, GUPTA A, DESHPANDEY P A, MADRAS G, HEGDE M S. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ[J]. J Phys Chem C, 2009, 113(10):4059-4068. doi: 10.1021/jp8060569
    [10] PANG L, FAN C, SHAO L N, SONG K P, YI J X, CAI X, WANG J, KANG M, LI T. The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J]. Chem Eng J, 2014, 253:394-401. doi: 10.1016/j.cej.2014.05.090
    [11] CAO Y, ZOU S, LAN L, YANG Z Z, XU H D, LIN T, GONG M C, CHEN Y Q. Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx with ammonia[J]. J Mol Catal A:Chem, 2015, 398:304-311. doi: 10.1016/j.molcata.2014.12.020
    [12] 胡宜康, 徐斌, 曹智锟, 毛静雯. Cu负载量及改性对Cu/SAPO-34催化剂NH3-SCR性能的影响[J].现代化工, 2020, 40(5):122-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdhg202005028

    HU Yi-kang, XU Bin, CAO Zhi-kun, MAO Jing-wen. Effects of Cu loading and modification on the performance of Cu/SAPO-34 catalyst NH3-SCR[J]. Mod Chem Ind, 2020, 40(5):122-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdhg202005028
    [13] QI G, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts[J]. Appl Catal A:Gen, 2005, 287:25-33. doi: 10.1016/j.apcata.2005.03.006
    [14] DOU B, LV G, WANG C, HAO Q L, HUI K S. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chem Eng J, 2015, 270:549-556. doi: 10.1016/j.cej.2015.02.004
    [15] WANG L, LI W, QI G S, WEN D. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3[J]. J Catal, 2012, 289:21-29. doi: 10.1016/j.jcat.2012.01.012
    [16] 宿文康. Cu/CHA分子筛选择性催化还原柴油车尾气NOx的机理研究[D].北京: 清华大学, 2016.

    SU Wen-kang. Study on the mechanism of Cu/CHA molecular sieve selective catalytic reduction of NOx in diesel vehicle Exhaust[D]. Beijing: Tsinghua University, 2016.
    [17] KWAK J H, TONKYN R, TRAN D, MEI D H, CHO S J, KOVARIK L, LEE J H, PEDEN C H F, SZANYI J. Size-dependent catalytic performance of CuO on γ-Al2O3:NO reduction versus NH3 oxidation[J]. ACS Catal, 2012, 2(7):1432-1440. doi: 10.1021/cs3002463
    [18] WANG J, HUANG Y, YU T, ZHOU S C, SHEN M Q, LI W, WANG J Q. The migration of Cu species over Cu-SAPO-34 and its effect on NH3 oxidation at high temperature[J]. Catal Sci Technol, 2014, 4(9):3004-3012. doi: 10.1039/C4CY00451E
    [19] YU C L, HUANG B C, DONG L F, CHEN F, LIU X Q. Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature[J]. Chem Eng J, 2017, 316(Complete):1059-1068. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d63ab1b113a44055ac32a55a0217e785
    [20] WANG L, GAUDET J R, Li W, WANG D. Migration of Cu species in Cu/SAPO-34 during hydrothermal aging[J]. J Catal, 2013, 306(1/2):68-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b683e96e99c5909b591d15c35036bb90
    [21] ZHAO S, HUANG L M, JIANG B Q, CHENG M, ZHANG J W, HU Y J. Stability of Cu-Mn bimetal catalysts based on different zeolites for NOx removal from diesel engine exhaust[J]. Chin J Catal, 2018, 39(4):800-809. doi: 10.1016/S1872-2067(18)63013-X
    [22] GAO F, WALTER E D, KOLLAR M, WANG Y L, SZANYI J, PEDEN C H F. Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions[J]. J Catal, 2014, 319:1-14. doi: 10.1016/j.jcat.2014.08.010
    [23] VENNESTROM P N R, KATERINPOULOU A, TIRUVALAM R R, KUSTOV A, MOSES P G, CONCEPCION P, CORMA A. Migration of Cu ions in SAPO-34 and its impact on selective catalytic reduction of NOx with NH3[J]. ACS Catal, 2013, 3(9):2158-2161. doi: 10.1021/cs400499p
    [24] LIU J, LI X Y, ZHAO Q D, ZHANG D K, NDOKOYE P. The selective catalytic reduction of NO with propene over Cu-supported Ti-Ce mixed oxide catalysts:Promotional effect of ceria[J]. J Mol Catal A:Chem, 2013, 378, 115-123. doi: 10.1016/j.molcata.2013.06.005
    [25] DUTTA P, PAL S, SEEHRA M S, SHI Y, EYRING E M, ERNST R D. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles[J]. Chem Mater, 2006, 18(21):5144-5146. doi: 10.1021/cm061580n
    [26] VAN KOOTEN W E J, LIANG B, KRIJNSEN H C, OUDSHOORN O L, CALIS H P A, VAN DEN BLEEK C M. Ce-ZSM-5 catalysts for the selective catalytic reduction of NOx in stationary diesel exhaust gas[J]. Appl Catal B:Environ, 1999, 21(3):203-213. doi: 10.1016/S0926-3373(99)00023-5
    [27] WANG J, YU T, WANG X Q, QI G S, XUE J J, SHEN M Q, LI W. The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR[J]. Appl Catal B:Environ, 2012, 127:137-147. doi: 10.1016/j.apcatb.2012.08.016
    [28] CAO Y, LAN L, FENG X, YANG Z Z, ZOU S, XU H D, LI Z Q, GONG M C, CHEN Y Q. Cerium promotion on the hydrocarbon resistance of a Cu-SAPO-34 NH3-SCR monolith catalyst[J]. Catal Sci Technol, 2015, 5(9):4511-4521. doi: 10.1039/C5CY00704F
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  41
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-07
  • 修回日期:  2020-09-21
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-10-10

目录

    /

    返回文章
    返回