留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉淀铁费托合成催化剂焙烧工艺的优化研究

郭秀盈 常海 程萌 朱加清 张魁 王鹏 武鹏 林泉 吕毅军

郭秀盈, 常海, 程萌, 朱加清, 张魁, 王鹏, 武鹏, 林泉, 吕毅军. 沉淀铁费托合成催化剂焙烧工艺的优化研究[J]. 燃料化学学报(中英文), 2017, 45(2): 235-242.
引用本文: 郭秀盈, 常海, 程萌, 朱加清, 张魁, 王鹏, 武鹏, 林泉, 吕毅军. 沉淀铁费托合成催化剂焙烧工艺的优化研究[J]. 燃料化学学报(中英文), 2017, 45(2): 235-242.
GUO Xiu-ying, CHANG Hai, CHENG Meng, ZHU Jia-qing, ZHANG Kui, WANG Peng, WU Peng, LIN Quan, LV Yi-jun. Optimization of the calcination process for precipitated iron based Fischer-Tropsch catalyst preparation[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 235-242.
Citation: GUO Xiu-ying, CHANG Hai, CHENG Meng, ZHU Jia-qing, ZHANG Kui, WANG Peng, WU Peng, LIN Quan, LV Yi-jun. Optimization of the calcination process for precipitated iron based Fischer-Tropsch catalyst preparation[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 235-242.

沉淀铁费托合成催化剂焙烧工艺的优化研究

详细信息
    通讯作者:

    Tel:010-57339630,E-mail:guoxiuying@nicenergy.com

  • 中图分类号: TQ529.2

Optimization of the calcination process for precipitated iron based Fischer-Tropsch catalyst preparation

  • 摘要: 通过DOE实验设计对沉淀铁费托合成催化剂焙烧过程进行了优化,并给出了焙烧过程的分子模拟与粒子长大模型。结果表明,随着焙烧温度的升高和焙烧时间的延长,催化剂的孔容减小,堆比及骨架密度增加,耐磨性改善。BET表面与磨耗的变化趋势一致,即比表面积越小磨耗越小;磨耗与密度成线性反比关系,密度越高磨耗越小。通过焙烧工艺的优化,可调变Cu、Si通过O原子与Fe原子的键合作用及催化剂的粒子粒径,得到较高F-T活性且稳定性好的沉淀铁催化剂。在该实验中,优化的焙烧温度为560℃。
  • 图  1  实验数据分析及优化

    Figure  1  Analysis of DOE experiment data

    图  2  F-T催化剂磨耗与密度的关系

    Figure  2  Attrition and density relationship of F-T catalyst

    图  3  DOE 实验样品的XRD谱图

    Figure  3  XRD patterns of the samples calcined by DOE experiments

    a: 20 ℃/min,600 ℃,6 h; b: 20 ℃/min,600 ℃,2 h; c: 11 ℃/min,500 ℃,4 h; d: 2 ℃/min,400 ℃,6 h; e: 20 ℃/min,400 ℃,2 h

    图  4  不同焙烧条件下焙烧样品的H2-TPR谱图

    Figure  4  H2-TPR profiles of the catalysts calcined under different conditions

    a: 20 ℃/min,600 ℃,6 h; b: 11 ℃/min,500 ℃,4 h; c: 20 ℃/min,400 ℃,2 h

    图  5  不同温度下焙烧样品的XRD谱图

    Figure  5  XRD patterns of the samples calcined at different temperature

    图  6  不同温度焙烧样品的孔径分布

    Figure  6  Pore size distribution of the samples calcined at different temperatures

    图  7  不同温度焙烧样品的SEM照片

    Figure  7  SEM micrograph of the samples calcined at different temperatures

    图  8  不同温度焙烧样品的H2-TPR谱图

    Figure  8  H2-TPR of the samples calcined at different temperatures

    图  9  不同温度焙烧样品的F-T反应活性与稳定性

    Figure  9  F-T activity and stability of the samples calcined at different temperatures

    图  10  沉淀铁催化剂的焙烧模型示意图

    Figure  10  Sintering model of the coprecipitated iron-based F-T catalyst

    表  1  DOE实验制备样品的磨耗、密度和BET

    Table  1  Attrition,density and BET data of DOE experiments

    Sample Pore volume
    v/(cm3·g-1)
    Surface area
    A/(m2·g-1)
    Real density
    ρ/(g·cm-3)
    Attrition /%
    2 ℃/min,600 ℃,2 h 0.673 167.04 4.43 4.68
    20 ℃/min,600 ℃,6 h 0.664 170.57 4.29 4.47
    11 ℃/min,500 ℃,4 h 0.738 216.87 4.13 8.47
    2 ℃/min,400 ℃,6 h 0.714 218.51 4.08 7.21
    20 ℃/min,400 ℃,2 h 0.701 258.57 3.86 12.2
    下载: 导出CSV

    表  2  焙烧温度对催化剂活性与选择性的影响

    Table  2  Effects of calcination temperature on iron based FT catalyst activity and selectivity

    500 ℃ 560 ℃ 600 ℃
    Time on stream t/h 10 50 100 200 10 50 100 200 10 50 100 200
    CO conversion x/% 70.0 69.2 62.7 61.5 58.1 60.7 62.4 62.3 57.8 60.7 60.8 61.3
    CO2 selectivity s/% 32.2 32.0 31.6 30.9 30.8 30.9 31.6 31.6 30.5 30.9 31.0 30.9
    Hydrocarbon selectivity s/%
    CH4 3.0 3.1 3.3 3.4 2.7 2.7 2.8 2.8 2.5 2.6 2.6 2.5
    C2-4 12.0 12.3 13.0 16.4 10.4 10.4 10.9 10.4 9.7 10.0 9.7 9.7
    C5+ 85.0 84.6 83.7 80.1 86.9 86.9 86.3 86.8 87.8 87.4 87.7 87.7
    reaction conditions: 2.3 MPa,235 ℃,H2/CO(volume ratio)=1.5,GHSV=3 000 h-1
    下载: 导出CSV
  • [1] XIANG Hong-wei, YANG Yong, LI Yong-wang. Coal indirect liquefaction:From basic research to industry[J]. Sci China:Chem, 2014,44(12):1876-1892.
    [2] JAGER B, ESPINOZA R. Advances in low temperature Fischer-Tropsch synthesis[J]. Catal Today, 1995,23(1):17-28. doi: 10.1016/0920-5861(94)00136-P
    [3] SHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 1999,186(1/2):3-12. http://www.wenkuxiazai.com/doc/40f46e05cc1755270722080e-2.html
    [4] JOTHIMURUGESAN K, GOODWIN J G, GANGWAL S K, SPIVEY J J. Development of Fe Fischer-Tropsch catalysts for slurry bubble column reactors[J]. Catal Today, 2000,58(4):335-344. doi: 10.1016/S0920-5861(00)00266-2
    [5] SUDSAKORN K, GOODWIN J G, JOTHIMURUGESAN K, ADEYIGA A A. Preparation of attrition-resistant spray-dried Fe Fischer-Tropsch catalysts using precipitated SiO2[J]. Ind Eng Chem Res, 2001,40(22):4778-4784. doi: 10.1021/ie0101442
    [6] JONG W B, PARK S J, KANG S H. Effect of Cu content on the bifunctional Fischer-Tropsch Fe-Cu-K/ZSM5 catalyst[J]. J Ind Eng Chem, 2009,15(6):798-802. doi: 10.1016/j.jiec.2009.09.002
    [7] POUR A N, ZARE M, ZAMANI Y. Studies on product distribution of alkali promoted iron catalyst in Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2010,19(1):31-34. doi: 10.1016/S1003-9953(09)60025-6
    [8] SMIT E D, GROOT F M, BLUME R, HAVECKER M, AXEL K G, WECKHUYSEN B M. The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts[J]. Phys Chem Chem Phys, 2010,12(3):667-680. doi: 10.1039/B920256K
    [9] SUDSAKORN K, GOODWIN J G, JOTHEIMURUGESAN J K,ADEYIGA A A. Preparation of attrition-resistant spray-dried Fe Fischer-Tropsch catalysts using precipitated SiO2[J]. Ind Eng Chem Res, 2001,40(22):4778-4784. doi: 10.1021/ie0101442
    [10] PARK J Y, LEE Y J, KHANNA P K, JUN K W, BAE J W, KIM Y H. Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts:Effect of particle size of iron oxide[J]. 2010,323(1/2):84-90. http://d.scholar.cnki.net/detail/SJES_U/SJES13011300653192
    [11] WAN H J, WU B S, ZHANG C H, TENG B T, TAO Z C, YANG Y, ZHU Y L, XIANG H W, LI Y W. Effect of Al2O3/SiO2 ratio on iron-based catalysts for Fischer-Tropsch synthesis[J]. Fuel, 2006,85(10/11):1371-1377.
    [12] SMIT E D, CINQUINI F, BEALE A M, SAFONOVA O V, BEEK W V, SAUTET P, WECKHUYSEN B M. Stability and reactivity of ε, -χ, -θ, iron carbide catalyst phases in Fischer-Tropsch synthesis:ControllingμC[J]. J Am Chem Soc, 2010,132:14928-14941. doi: 10.1021/ja105853q
    [13] MA W P, DING Y J, VAZQUEZ V H C, BUKUR D B. Study on catalytic performance and attrition strength of the Ruhrchemie catalyst for the Fischer-Tropsch synthesis in a stirred tank slurry reactor[J]. Appl Catal A:Gen, 2004,268(1/2):99-106. https://www.researchgate.net/publication/237879058_Study_on_catalytic_performance_and_attrition_strength_of_the_Ruhrchemie_catalyst_for_the_Fischer-Tropsch_synthesis_in_a_stirred_tank_slurry_reactor?_sg=unqRtsz-XA84CkbxiZbU_Vkiy2XkAX12XG9NXtgRvIXMlOzf_0gX9oOFgBdtR6sygAt_fnrfTa4vzxUVzLANBg
    [14] HAO Qing-lan, WANG Hong, LIU Fu-xia, BAI Liang, ZHANG Zhi-xin, XIANG Hong-wei, LI Yong-wang. Effect of calcination temperature on catalytic performance of iron-based catalyst for slurry Fischer-Tropsch synthesis reaction[J]. Chin J Catal, 2005, 26(4):340-348.
    [15] YANG Yong, TAO Zhi-chao, ZHANG Cheng-hua, WANG Hong, TIAN Lei, XU Yuan-yuan, XIANG Hong-wei, LI Yong-wang. Effect of calcination temperature on the structure and Fischer-Tropsch performance of Fe-Mn catalyst[J]. J Fuel Chem Technol, 2004,32(6):718-721.
    [16] LV Yi-jun, SHI Yu-lin, NING Wen-sheng, LV De-yi. A study on the influence of precipitated iron-based catalyst for Fischer-Tropsch reaction performance[J]. ShenHua Technol, 2009,7(2):77-82.
    [17] WU Peng, SHI Yu-lin, NING Wen-sheng, WU Xiu-zhang. Effect of aging time on the catalytic performance of precipitated iron catalyst for Fisher-Tropsch synthesis[J]. Pet Process Petrochem, 2011,41(10):26-32.
    [18] ZHANG Ji-guang. Catalyst Preparation Process Technology[M]. Beijing:Sinopec Press, 2004
    [19] SCHWERTMANN U, FRIEDL J, STANJEK H. From Fe(Ⅲ) ions to ferrihydrite and then to hematite[J]. J Coll Inter Sci, 1999,209(1):215-223. doi: 10.1006/jcis.1998.5899
    [20] SUN Yu-chuan, YANG Jun, TANG Yu, HAO Qing-lan, TIAN Lei, ZHANG Zhi-xin, XIANG Hong-wei, LI Yong-wang. Effect of calcination temperature on magnesium promoted iron-based catalyst for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 2005,33(2):218-223.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  48
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-18
  • 修回日期:  2016-12-21
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-02-10

目录

    /

    返回文章
    返回