留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳质表面异相还原NO2的反应机理

许紫阳 岳爽 王春波 孙博昭 李航行

许紫阳, 岳爽, 王春波, 孙博昭, 李航行. 碳质表面异相还原NO2的反应机理[J]. 燃料化学学报(中英文), 2020, 48(10): 1236-1247.
引用本文: 许紫阳, 岳爽, 王春波, 孙博昭, 李航行. 碳质表面异相还原NO2的反应机理[J]. 燃料化学学报(中英文), 2020, 48(10): 1236-1247.
XU Zi-yang, YUE Shuang, WANG Chun-bo, SUN Bo-zhao, LI Hang-xing. Reaction mechanism of heterogeneous reduction of NO2 on carbonaceous surface[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1236-1247.
Citation: XU Zi-yang, YUE Shuang, WANG Chun-bo, SUN Bo-zhao, LI Hang-xing. Reaction mechanism of heterogeneous reduction of NO2 on carbonaceous surface[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1236-1247.

碳质表面异相还原NO2的反应机理

基金项目: 

国家自然科学基金 51976059

详细信息
  • 中图分类号: TQ534

Reaction mechanism of heterogeneous reduction of NO2 on carbonaceous surface

Funds: 

The National Natural Science Foundation of China 51976059

More Information
  • 摘要: 基于量子化学密度泛函理论(DFT),研究了碳质表面异相还原NO2的反应机理,针对Zigzag与Armchair两种碳质表面,采用M06-2X方法与6-311G(d)基组联用,优化得到了不同反应路径下所有驻点的几何构型与能量,并对各路径进行了热力学与动力学分析,重点探究了CO在NO2异相还原反应中的作用规律,同时考察了碳质表面与反应温度对异相反应的影响。计算结果表明,NO2在碳质表面的异相还原过程主要分为两个阶段,即NO2还原阶段与碳氧化物释放阶段。通过对比无CO分子参与的反应可知,参与反应的CO分子可以降低各阶段的反应能垒并且加快各阶段的反应速率;CO分子存在时,NO2还原阶段的反应能垒被降低,促进了NO2还原成NO的异相反应过程,同时参与反应的CO分子与碳质表面剩余氧原子结合,形成CO2分子并释放,使碳氧化物释放阶段的反应能垒降低,从而促进了整体还原反应的进行。此外,与Armchair型相比,基于Zigzag型碳质表面的NO2异相还原反应能垒更低且反应速率更快,说明NO2异相还原反应更容易在Zigzag型碳质表面进行。最后,由反应动力学分析可知,随着温度上升,各阶段的反应速率均增大,说明提高温度对碳质表面的NO2异相还原能够起到促进作用。
  • 图  1  碳质表面模型示意图

    Figure  1  Framework of carbonaceous surface model

    图  2  NO2吸附构型与能量

    Figure  2  Adsorption configuration and energy of NO2

    图  3  路径1反应过程的能量变化

    Figure  3  Potential energy surface change of path-1

    图  4  路径1反应过程的各驻点结构

    Figure  4  Structures of stagnation points of path-1

    图  5  路径2反应过程的能量变化

    Figure  5  Potential energy surface change of path-2

    图  6  路径2反应过程的各驻点结构

    Figure  6  Structures of stagnation points of path-2

    图  7  NO2吸附构型与能量

    Figure  7  Adsorption configuration and energy of NO2

    图  8  路径3反应过程的能量变化

    Figure  8  Potential energy surface change of path-3

    图  9  路径3反应过程的各驻点结构

    Figure  9  Structures of stagnation points of path-3

    图  10  路径4反应过程的能量变化

    Figure  10  Potential energy surface change of path-4

    图  11  路径4反应过程的各驻点结构

    Figure  11  Structures of stagnation points of path-4

    图  12  (a) NO2分解阶段决速步反应速率常数, (b)碳氧化物释放阶段决速步反应速率常数

    Figure  12  (a) Reaction rate constants of the rate-determining steps in the reduction of NO2, (b) Reaction rate constants of the rate-determining steps in the desorption of carbon oxide

    表  1  反应动力学参数

    Table  1  Reaction kinetic parameters

    Models Stages Pre-exponential
    factor A / s-1
    Activation energy
    Ea / (kJ·mol-1)
    Arrhenius equation
    Zigzag NO2 reduction with CO 2.90×1013 104.01 k=2.90×1013e-12508.41/T
    NO2 reduction without CO 1.40×1014 124.25 k=1.40×1014e-14943.92/T
    carbon oxide desorption with CO 9.49×1013 224.42 k=9.49×1013e-26991.54/T
    carbon oxide desorption without CO 5.44×1016 454.69 k=5.44×1016e-54686.77/T
    Armchair NO2 reduction with CO 3.54×1014 135.00 k=3.54×1014e-16236.87/T
    NO2 reduction without CO 9.03×1014 164.55 k=9.03×1014e-19790.39/T
    carbon oxide desorption with CO 3.94×1013 116.58 k=3.94×1013e-14021.60/T
    carbon oxide desorption without CO 3.58×1015 127.59 k=3.58×1015e-15345.05/T
    下载: 导出CSV
  • [1] 张秀霞, 吕晓雪, 伍慧喜, 谢苗, 林日亿, 周志军.钠对焦炭非均相还原NO的微观作用机理[J].燃料化学学报, 2020, 48(6):663-673. http://www.ccspublishing.org.cn/article/id/62451d3b-2053-47a0-b8f0-4234028f75aa

    ZHANG Xiu-xia, LV Xiao-xue, WU Hui-xi, XIE Miao, LIN Ri-yi, ZHOU Zhi-jun. Microscopic mechanism for effect of sodium on NO heterogeneous reduction by char[J]. J Fuel Chem Technol, 2020, 48(6):663-673. http://www.ccspublishing.org.cn/article/id/62451d3b-2053-47a0-b8f0-4234028f75aa
    [2] 谈冠希, 迟姚玲, 李双, 易玉峰, 靳广洲.锰锆复合氧化物CO催化还原NO性能研究[J].燃料化学学报, 2019, 47(10):1258-1264. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=RLHX201910013

    TAN Guan-xi, CHI Yao-ling, LI Shuang, YI Yu-feng, JIN Guang-zhou. Study on the performance of Mn-Zr composite oxide for CO reduction of NO[J]. J Fuel Chem Technol, 2019, 47(10):1258-1264. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=RLHX201910013
    [3] TAYLOR K. nitric oxide catalysis in automotive exhaust systems[J]. Catal Rev, 1993, 4(35):457-481. doi: 10.1080/01614949308013915
    [4] WANG C, WANG P, DU Y, CHE D. Experimental study on effects of combustion atmosphere and coal char on NO2 reduction under oxy-fuel condition[J]. J Energy Ins, 2019, 92(4):1023-1033. doi: 10.1016/j.joei.2018.07.004
    [5] 信晶.煤焦-NO反应过程中氮转化机理与试验研究[D].北京: 华北电力大学, 2015.

    XIN Jing. Mechanism and experimental study of nitrogen conversion in coal char-NO reaction process[D]. Beijing: North China Electric Power University, 2015.
    [6] 李竞岌, 杨欣华, 杨海瑞, 吕俊复.鼓泡床焦炭型氮氧化物生成的试验与模型研究[J].煤炭学报, 2016, 41(6):1546-1553. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201606030

    LI Jing-ji, YANG Xin-hua, YANG Hai-rui, LV Jun-fu. Experimental and model study on the formation of coke type NOx in bubble bed[J].J China Coal Soc, 2016, 41(6):1546-1553. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201606030
    [7] WANG C A, DU Y, CHE D. Study on N2O reduction with synthetic coal char and high concentration CO during oxy-fuel combustion[J]. Proc Combust Inst, 2015, 35(2):2323-2330. doi: 10.1016/j.proci.2014.07.018
    [8] 张秀霞, 周志军, 周俊虎, 姜树栋, 刘建忠, 岑可法. N2O在焦炭表面异相生成和分解机理的密度泛函理论研究[J].燃料化学学报, 2011, 39(11):806-811. http://d.wanfangdata.com.cn/periodical/rlhxxb201111002

    ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, JIANG Shu-dong, LIU Jian-zhong, CEN Ke-fa. Density Functional Theory study on the mechanism of heterogeneous formation and decomposition of N2O on coke surface[J]. J Fuel Chem Technol, 2011, 39(11):806-811. http://d.wanfangdata.com.cn/periodical/rlhxxb201111002
    [9] ARENILLAS A, ARIAS B, RUBIERA F, PIS J J, LÓPEZ R, CAMPOMANES P, PEVIDA C, MENÉNDEZ M I. Heterogeneous reaction mechanisms of the reduction of nitric oxide on carbon surfaces:A theoretical analysis[J]. Theor Chem Acc, 2010, 127(1/2):95-108. doi: 10.1007/s00214-009-0708-8
    [10] PEVIDA C, ARENILLAS A, RUBIERA F, PIS J J. Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms[J]. Fuel, 2007, 86(1/2):41-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1202d52ac2263a66c1d375b9adda482a
    [11] 应芝, 郑晓园, 崔国民.基于O2/CO2气氛的煤粉燃烧性能研究[J].动力工程学报, 2019, 39(1):7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlgc201901002

    YING Zhi, ZHENG Xiao-yuan, CUI Guo-min. Study on combustion performance of pulverized coal based on O2/CO2 atmosphere[J].Chin J Power Eng, 2019, 39(1):7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlgc201901002
    [12] DEGRAEUWE B, THUNIS P, CLAPPIER A, WEISS M, LEFEBVRE W, JANSSEN S, VRANCKX S. Impact of passenger car NOx emissions and NO2 fractions on urban NO2 pollution-Scenario analysis for the city of Antwerp, Belgium[J]. Atmos Environ, 2016, 126:218-224. doi: 10.1016/j.atmosenv.2015.11.042
    [13] 欧阳子区, 朱建国, 吕清刚.无烟煤粉经循环流化床预热后燃烧特性及NOx排放特性实验研究[J].中国电机工程学报, 2014, (11):1748-1754. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201411005

    OUYANG Zi-qu, ZHU Jian-guo, LV Qing-gang. Experimental study on combustion and NOx emission of pulverized anthracite coal preheated by a circulating fluidized bed[J]. Proc CSEE, 2014, (11):1748-1754. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201411005
    [14] GARCÍA-GARCÍA A, ILLÁN-GÓMEZ M J, LINARES-SOLANO A, SALINAS-MARTÍNEZ DE LECEA C. NOx Reduction by potassium-containing coal briquettes. effect of NO2 concentration[J]. Energy Fuels, 1999, 13(2):499-505. doi: 10.1021/ef980165h
    [15] SADAOKA Y, JONES T A, REVELL G S, G PEL W. Effects of morphology on NO2 detection in air at room temperature with phthalocyanine thin films[J]. J Mater Sci, 1990, 25(12):5257-5268. doi: 10.1007/BF00580159
    [16] ZHU X, ZHANG L, ZHANG M, MA C. Effect of N-doping on NO2 adsorption and reduction over activated carbon:An experimental and computational study[J]. Fuel, 2019, 258:116109. doi: 10.1016/j.fuel.2019.116109
    [17] JEGUIRIM M, TSCHAMBER V, BRILHAC J F, EHRBURGER P. Interaction mechanism of NO2 with carbon black:effect of surface oxygen complexes[J]. J Anal Appl Pyrolysis, 2004, 72(1):171-181. doi: 10.1016/j.jaap.2004.03.008
    [18] MUCKENHUBER H, GROTHE H. The heterogeneous reaction between soot and NO2 at elevated temperature[J]. Carbon, 2006, 44(3):546-559. doi: 10.1016/j.carbon.2005.08.003
    [19] 王春波, 岳爽, 许旭斌, 李一鹏. O2/CO2气氛下煤焦恒温燃烧NOx释放特性[J].煤炭学报, 2018, 43(1):257-264. http://www.cqvip.com/QK/96550X/20181/674694153.html

    WANG Chun-bo, YUE Shuang, XU Xu-bin, LI Yi-peng. NOx emission characteristics of coal coke under constant temperature combustion in O2/CO2 atmosphere[J]. J China Coal Soc, 2018, 43(1):257-264. http://www.cqvip.com/QK/96550X/20181/674694153.html
    [20] 王贲, 苏胜, 孙路石, 胡松, 费华, 卢腾飞, 向军. O2/CO2气氛下CO对煤焦异相还原NO影响的研究[J].工程热物理学报, 2012, 33(2):336-338. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201202042.htm

    WANG Bi, SU Sheng, SUN Lu-shi, HU Song, FEI Hua, LU Teng-fei, XIANG Jun. Study on the effect of CO on NO reduction in coal coke under O2/CO2 atmosphere[J]. J Eng Thermo, 2012, 33(2):336-338. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201202042.htm
    [21] 魏帅, 严国超, 张志强, 刘松孟, 张远方.晋城无烟煤的分子结构特征分析[J].煤炭学报, 2018, 43(2):555-562.

    WEI Shuai, YAN Guo-chao, ZHANG Zhi-qiang, LIU Meng-song, ZHANG Yuan-fang. Analysis of molecular structure characteristics of Jincheng Anthracite[J]. J China Coal Soc, 2018, 43(2):555-562.
    [22] 邹潺, 王春波, 邢佳颖.煤燃烧过程中砷与氮氧化物的反应机理[J].燃料化学学报, 2019, 47(2):138-143. http://www.ccspublishing.org.cn/article/id/c24a55cc-9570-4473-8d94-6a0c372968b1

    ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. J Fuel Chem Technol, 2019, 47(2):138-143. http://www.ccspublishing.org.cn/article/id/c24a55cc-9570-4473-8d94-6a0c372968b1
    [23] SINGLA P, SINGHAL S, GOEL N. Theoretical study on adsorption and dissociation of NO2 molecules on BNNT surface[J]. Appl Surf Sci, 2013, 283:881-887. doi: 10.1016/j.apsusc.2013.07.038
    [24] SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029
    [25] ENOKI T, FUJⅡ S, TAKAI K. Zigzag and armchair edges in graphene[J]. Carbon, 2012, 50(9):3141-3145. doi: 10.1016/j.carbon.2011.10.004
    [26] GIRITÇÖ, MEYER J C, ERNI R, ROSSELL M D, KISIELOWSKI C, YANG L, PARK C, CROMMIE M F, COHEN M L, LOUIE S G, ZETTL A. Graphene at the edge:Stability and dynamics[J]. Science, 2009, 323(5922):1705-1708. doi: 10.1126/science.1166999
    [27] JIAO A, ZHANG H, LIU J, JIANG X. Quantum chemical and kinetics calculations for the NO reduction with char(N):Influence of the carbon monoxide[J]. Combust Flame, 2018, 196:377-385. doi: 10.1016/j.combustflame.2018.06.029
    [28] 余岳溪, 高正阳, 季鹏, 李方勇, 杨维结.煤焦异相还原N2O的反应机理[J].化工学报, 2017, 68(1):369-374. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201701044

    YU Yue-xi, GAO Zheng-yang, JI Peng, LI Fang-yong, YANG Wei-jie. Reaction mechanism of heterogeneous reduction of N2O from coal coke[J]. CIESC J, 2017, 68(1):369-374. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201701044
    [29] CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry[J]. Carbon, 1998, 36(7):1061-1070. http://jnumedmtg.snmjournals.org/cgi/content/short/53/1_MeetingAbstracts/1540
    [30] YANG F H, YANG R T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite:Insight into hydrogen storage in carbon nanotubes[J]. Carbon, 2002, 40(3):437-444. doi: 10.1016/S0008-6223(01)00199-3
    [31] GAO Z, YANG W, DING X, DING Y, YAN W. Theoretical research on heterogeneous reduction of N2O by char[J]. App Thermal Eng 2017, 126:28-36. doi: 10.1016/j.applthermaleng.2017.07.166
    [32] JIAO A, ZHANG H, LIU J, SHEN J, JIANG X. The role of CO played in the nitric oxide heterogeneous reduction:A quantum chemistry study[J]. Energy, 2017, 141:1538-1546. doi: 10.1016/j.energy.2017.11.115
    [33] ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:Two new functionals and systematic testing of four M06 functionals and 12 other functionals[J]. Theor Chem Acc, 2008, 119(5/6):525. doi: 10.1007/s00214-007-0310-x
    [34] ZHAO Y, TRUHLAR D G. A Prototype for graphene material simulation:Structures and interaction potentials of coronene dimers[J]. J Phys Chem C, 2008, 112(11):4061-4067. doi: 10.1021/jp710918f
    [35] 高正阳, 杨维结, 阎维平.煤焦催化HCN还原NO的反应机理[J].燃料化学学报, 2017, 45(9):1043-1048. http://www.cnki.com.cn/Article/CJFDTotal-RLHX201709003.htm

    GAO Zheng-yang, YANG Wei-jie, YAN Wei-ping. Reaction mechanism of coal coke catalyzing HCN reduction[J]. J Fuel Chem Technol, 2017, 45(9):1043-1048. http://www.cnki.com.cn/Article/CJFDTotal-RLHX201709003.htm
    [36] J F M, W T G, B S H, E S G, A R M, et al. Revision A.03[CP]. Wallingford CT: Gaussian, Inc., 2016.
    [37] ZHANG H, LIU J, SHEN J, JIANG X. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015, 82:312-321. doi: 10.1016/j.energy.2015.01.040
    [38] 许紫阳, 岳爽, 王春波, 刘瑞琪.焦炭催化CO还原NO的反应机理研究[J].燃料化学学报, 2020, 48(3):266-274. http://www.cnki.com.cn/Article/CJFDTotal-RLHX20200416006.htm

    XU Zi-yang, YUE Shuang, WANG Chun-bo, LIU Rui-qi. Study on the reaction mechanism of NO reduction with CO catalyzed by char[J]. J Fuel Chem Technol, 2020, 48(3):266-274. http://www.cnki.com.cn/Article/CJFDTotal-RLHX20200416006.htm
    [39] 钟俊, 高正阳, 丁艺, 余岳溪, 杨维结. Zigzag煤焦表面异相还原N2O反应[J].煤炭学报, 2017, 42(11):3028-3034. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201711031.htm

    ZHONG Jun, GAO Zheng-yang, DING Yi, YU Yue-xi, YANG Wei-jie. Heterogeneous reduction of N2O reaction on Zigzag coal char surface[J].J China Coal Soc, 2017, 42(11):3028-3034. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201711031.htm
    [40] CHEN P, GU M, CHEN G, LIU F, LIN Y. DFT study on the reaction mechanism of N2O reduction with CO catalyzed by char[J]. Fuel, 2019, 254:115666. doi: 10.1016/j.fuel.2019.115666
    [41] 王鹏乾, 王长安, 杜勇博, 张龙飞, 车得福. O2/CO2燃烧条件下NO2还原特性的实验研究[J].西安交通大学学报, 2017, 51(5):16-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xajtdxxb201705003

    WANG Peng-qian, WANG Chang-an, DU Yong-bo, ZHANG Long-fei, CHE De-fu. Experimental study on NO2 reduction characteristics under O2/CO2 combustion conditions[J]. J Xi'an Jiaotong Univ, 2017, 51(5):16-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xajtdxxb201705003
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  450
  • HTML全文浏览量:  105
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-11
  • 修回日期:  2020-09-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-10-10

目录

    /

    返回文章
    返回