留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pd/Cu (111)双金属表面催化糠醛脱碳及加氢的反应机理

钱梦丹 薛继龙 夏盛杰 倪哲明 蒋军辉 曹勇勇

钱梦丹, 薛继龙, 夏盛杰, 倪哲明, 蒋军辉, 曹勇勇. Pd/Cu (111)双金属表面催化糠醛脱碳及加氢的反应机理[J]. 燃料化学学报(中英文), 2017, 45(1): 34-42.
引用本文: 钱梦丹, 薛继龙, 夏盛杰, 倪哲明, 蒋军辉, 曹勇勇. Pd/Cu (111)双金属表面催化糠醛脱碳及加氢的反应机理[J]. 燃料化学学报(中英文), 2017, 45(1): 34-42.
QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, JIANG Jun-hui, CAO Yong-yong. Decarbonylation and hydrogenation reaction of furfural on Pd/Cu (111) surface[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 34-42.
Citation: QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, JIANG Jun-hui, CAO Yong-yong. Decarbonylation and hydrogenation reaction of furfural on Pd/Cu (111) surface[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 34-42.

Pd/Cu (111)双金属表面催化糠醛脱碳及加氢的反应机理

基金项目: 

国家自然科学基金 21503188

浙江省大学生科技创新活动计划 XinMiao Talent Plan

详细信息
    通讯作者:

    倪哲明, Tel:+86-13858123256, E-mail:jchx@zjut.edu.cn

  • 中图分类号: O641

Decarbonylation and hydrogenation reaction of furfural on Pd/Cu (111) surface

Funds: 

the National Natural Science Foundation of China 21503188

College Students Technology Innovation Plan of Zhejiang Province XinMiao Talent Plan

  • 摘要: 采用密度泛函理论(DFT)研究糠醛在最稳定Pd/Cu(111)双金属表面上的吸附构型和糠醛脱碳及加氢的反应机理。结果表明,当糠醛初始吸附于O3-Pd-top、O7-Cu-hcp位时,吸附构型最稳定,其吸附能为73.4 kJ/mol。糠醛在Pd/Cu(111)双金属表面上更易发生脱碳反应。对于糠醛脱碳反应,所需活化能较低,各个基元反应均为放热反应,糠醛更易先失去支链上的H形成(C4H3O)CO,然后中间体脱碳加氢得到呋喃,其中,C4H3O加氢生成呋喃所需活化能(72.6 kJ/mol)最高,是反应的控速步骤。对于加氢反应,糠醛与首个氢原子的反应需要最大的活化能(290.4 kJ/mol),是反应的限速步骤。
  • 图  1  不同排布方式的Pd/Cu (111)表面

    Figure  1  Different configuration of Pd/Cu (111) surface

    图  2  糠醛分子的结构(a)和Pd/Cu (111)表面(4×4)的平板模型的俯视图(b)及侧视图(c)

    Figure  2  Structure of furfural (a), top view (b) and side view (c) of (4×4) Pd/Cu (111) plane surface model

    图  3  糠醛分子在Pd/Cu (111)表面最佳吸附模型的俯视图(a)和侧视图(b)

    Figure  3  Top (a) and side (b) views of furfural molecule after adsorption on Pd/Cu (111) surface

    图  4  糠醛在Pd/Cu (111)表面脱碳反应的不同反应途径示意图

    Figure  4  Different reaction pathways for decarbonylation reaction of furfural on Pd/Cu (111) surface

    图  5  反应(1)-(3)在Pd/Cu (111)面的能量变化示意图

    Figure  5  Energy changes for reactions (1)-(3) on Pd/Cu (111) surface

    图  6  反应(4)在Pd/Cu (111)面上的能量变化示意图

    Figure  6  Energy change for reaction (4) on Pd/Cu (111) surface

    图  7  糠醛在Pd/Cu (111)表面加氢反应的不同反应途径示意图

    Figure  7  Different reaction pathways for hydrogenation reaction of furfural on Pd/Cu (111) surface

    图  8  A-D步骤在Pd/Cu (111)面上的能量变化示意图

    Figure  8  Energy change of A-D steps on Pd/Cu (111) plane

    (a): step A; (b): step B; (c): step C; (d): step D

    图  9  加氢反应在Pd/Cu (111)面上最优路径的初始态、过渡态和终态

    Figure  9  IS, TS and FS of main elementary reactions for hydrogenation reaction of furfural on Pd/Cu (111) surface

    表  1  糠醛分子吸附在Pd/Cu (111)表面的吸附能量

    Table  1  Adsorption energy of furfural molecule on Pd/Cu (111) surface

    Adsorption site Eads/(kJ·mol-1) Adsorption site Eads/(kJ·mol-1)
    O3-top-O7-top O3-bridge-O7-hcp
    Cu-Cu 70.6 Cu-Cu 64.4
    Pd-Pd 66.7 Pd-Pd 61.0
    Cu-Pd 72.8 Cu-Pd 66.5
    Pd-Cu 68.1 Pd-Cu 71.5
    O3-top-O7-hcp O3-bridge-O7-fcc
    Cu-Cu 64.2 Cu-Cu 62.4
    Pd-Pd 61.8 Pd-Pd 62.5
    Cu-Pd 63.7 Cu-Pd 70.4
    Pd-Cu 73.4 Pd-Cu 71.2
    O3-top-O7-fcc O3-hcp-O7-hcp
    Cu-Cu 69.7 Cu-Cu 64.1
    Pd-Pd 60.8 Pd-Pd 68.2
    Cu-Pd 63.8 Cu-Pd 62.0
    Pd-Cu 60.9 Pd-Cu 65.7
    O3-top-O7-bridge O3-hcp-O7-fcc
    Cu-Cu 64.9 Cu-Cu 69.7
    Pd-Pd 62.3 Pd-Pd 60.8
    Cu-Pd 63.0 Cu-Pd 63.8
    Pd-Cu 61.9 Pd-Cu 60.9
    O3-bridge-O7-bridge O3-fcc-O7-fcc
    Cu-Cu 64.0 Cu-Cu 65.1
    Pd-Pd 62.8 Pd-Pd 63.3
    Cu-Pd 71.4 Cu-Pd 67.0
    Pd-Cu 71.6 Pd-Cu 63.2
    下载: 导出CSV

    表  2  脱碳反应中各反应在Pd/Cu (111)面的活化能和反应能量变化

    Table  2  Activation barriers and reaction energies of elementary reactions for decarbonylation reaction on Pd/Cu (111) surface

    Reaction Ea/(kJ·mol-1) ΔE/(kJ·mol-1)
    Path A (1) (C4H3O) CHO*+*→C4H3O*+CHO* 66.5 -26.7
    Path B (2) (C4H3O) CHO*+*→(C4H3O) CO*+H* 19.9 -13.5
    (3) (C4H3O) CO*+*→C4H3O*+CO* 6.6 -18.8
    (4) C4H3O*+H*→C4H4O 72.6 -41.1
    下载: 导出CSV

    表  3  加氢反应中各反应在Pd/Cu (111)面的活化能和反应能量

    Table  3  Activation barriers and reaction energies of elementary reactions for hydrogenation reaction on Pd/Cu (111) surface

    Step Reaction Ea/(kJ·mol-1) ΔE/(kJ·mol-1)
    A1 (C4H3O) CHO*+H*→(C4H3O) CHOH* 37.7 115.6
    (C4H3O) CHOH*+H*→(C4H3O) CH2OH* 367.5 -98.1
    A2 (C4H3O) CHO*+H*→(C4H3O) CH2O* 290.4 111.8
    (C4H3O) CH2O*+H*→(C4H3O) CH2OH* 15.7 -103.7
    A′ (C4H3O) CH2O*→(C4H3O) CHOH* 140.1 3.8
    B1 (C4H3O) CH2OH*+H*α-(C4H4O) CH2OH* 89.4 82.6
    B2 (C4H3O) CH2OH*+H*β-(C4H4O) CH2OH* 252.9 105.9
    B3 (C4H3O) CH2OH*+H*γ-(C4H4O) CH2OH* 92.2 25.5
    B4 (C4H3O) CH2OH*+H*θ-(C4H4O) CH2OH* 193.4 19.1
    C1 α-(C4H4O) CH2OH*+H*α, α-(C4H5O) CH2OH* 328.5 111.1
    C2 α-(C4H4O) CH2OH*+H*α, β-(C4H5O) CH2OH* 89.8 -37.5
    D1 α, β-(C4H5O) CH2OH*+H*α, β, α-(C4H6O) CH2OH* 279.7 139.6
    D2 α, β-(C4H5O) CH2OH*+H*α, β, β-(C4H6O) CH2OH* 95.3 85.3
    E α, β, β-(C4H6O) CH2OH*+H*→(C4H7O) CH2OH 41.2 -59.2
    下载: 导出CSV
  • [1] YAN K, CHEN A C. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu-Cr catalyst[J]. Energy, 2013, 58:357-363. doi: 10.1016/j.energy.2013.05.035
    [2] 张俊姣, 廖航涛, 陆强, 张阳, 董长青.果糖低温快速热解制备糠醛的机理研究[J].燃料化学学报, 2013, 41(11):1303-1309. doi: 10.1016/S1872-5813(14)60001-3

    ZHANG Jun-jiao, LIAO Hang-tao, LU Qiang, ZHANG Yang, DONG Chang-qing. Mechanistic study on low-temperature fast pyrolysis of fructose to produce furfural[J]. J Fuel Chem Technol, 2013, 41(11):1303-1309. doi: 10.1016/S1872-5813(14)60001-3
    [3] YU W T, XIONG K, JI N, MARC D P, CHEN J G.Theoretical and experimental studies of the adsorption geometry and reaction pathways of furfural over FeNi bimetallic model surfaces and supported catalysts[J]. J Catal, 2014, 317:253-262. doi: 10.1016/j.jcat.2014.06.025
    [4] CHEN X C, SUN W, XIAO N, YAN Y J, LIU S W. Experimental study for liquid phase selective hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol on supported Ni catalysts[J]. Chem Eng J, 2007, 126(1):5-11. doi: 10.1016/j.cej.2006.08.019
    [5] YANG Y L, DU Z T, HUANG Y Z, LU F, WANG F, GAO J, XU J. Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts[J].Green Chem, 2013, 15(7):1932-1940. doi: 10.1039/c3gc37133f
    [6] SURAPA S, WEI A, DANIEL E R. Selective conversion of furfural to methylfuran over silica-supported Ni-Fe bimetallic catalysts[J]. J Catal, 2011, 284(1):90-101. doi: 10.1016/j.jcat.2011.09.005
    [7] YOSHINAO N, HIROYA N, HIDEO W, KEIICHI T. Total hydrogenation of furfural over a silica-supported nickel catalyst prepared by the reduction of a nickel nitrate precursor[J]. ChemCatChem, 2012, 4(11):1791-1797. doi: 10.1002/cctc.v4.11
    [8] KAIPROMMARAT S, KONGPARAKUL S, REUBROYCHAROEN P, GUAN G Q, SAMART C. Highly efficient sulfonic MCM-41 catalyst for furfural production:Furan-based biofuel agent[J]. Fuel, 2016, 174:189-196. doi: 10.1016/j.fuel.2016.02.011
    [9] LUO J, MONAI M, YUN H, ARROYO-RAMIRE L, WANG C, MURRAY C B, FORNASIERO P, GORTE R J. The H-2 pressure dependence of hydrodeoxygenation selectivities for furfural over Pt/C catalysts[J]. Catal Lett, 2016, 146(4):711-717. doi: 10.1007/s10562-016-1705-x
    [10] SIMON H P, NICOLE E L, MEDLIN J W. Synergistic effects of alloying and thiolate modification in furfural hydrogenation over Cu-based catalysts[J]. J Phys Chem Lett, 2014, 5(23):4110-4114. doi: 10.1021/jz502153q
    [11] LIU S B, YASUSHI A, MASAZUMI T, YOSHINAO N, KEIICHI T. One-pot selective conversion of furfural into 1, 5-pentanediol over a Pd-added Ir-ReOx/SiO2 bifunctional catalyst[J]. Green Chem, 2012, 16(2):617-626.
    [12] FAROOQ-AHMAD K, ARMELLE V, GEOR S F. Highly selective low-temperature hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol catalysed by hectorite-supported ruthenium nanoparticles[J]. Catal Commun, 2011, 12(15):1428-1431. doi: 10.1016/j.catcom.2011.05.024
    [13] ZHANG W, ZHU Y L, NIU S S, LI Y W. A study of furfural decarbonylation on K-doped Pd/Al2O3 catalysts[J]. J Mol Catal A:Chem, 2011, 335(1/2):71-81.
    [14] CAMEN P J G, JUAN A C, DESIRÉE D M, RAMÓN M T, JOSÉ S G, JOSEFA M R, RAFAEL M, PEDRO M T. Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts[J]. J Catal, 2016, 336:107-115. doi: 10.1016/j.jcat.2016.01.012
    [15] YOSHINAO N, KANA T, MASAZUMI T, KEIICHI T. Total hydrogenation of furfural and 5hydroxymethylfurfural over supported Pd-Ir alloy catalyst[J]. ACS Catal, 2014, 4(8):2718-2726. doi: 10.1021/cs500620b
    [16] SURSURAPAS S, TAWAN S, YU G M, PERLA B B, DANIEL E R. Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts[J]. J Catal, 2011, 277(1):1-13. doi: 10.1016/j.jcat.2010.10.005
    [17] VASSILI V, GIANNIS M, DIONISIOS G V. DFT study of furfural conversion to furan, furfuryl alcohol, and 2-methylfuran on Pd (111)[J]. ACS Catal, 2012, 2(12):2496-2504. doi: 10.1021/cs300395a
    [18] 夏明玉, 曹晓霞, 倪哲明, 施炜, 付晓微. Cu (111)面上糠醇加氢生成2-甲基呋喃的反应机理[J].催化学报, 2012, 33(6):1000-1006. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201206015.htm

    XIA Ming-yu, CAO Xiao-xia, NI Zhe-ming, SHI Wei, FU Xiao-wei. Reaction mechanism for 2-methylfuran formation during hydrogenation of furfuryl alcohol catalyzed by Cu (111) plane[J]. Chin J Catal, 2012, 33(6):1000-1006. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201206015.htm
    [19] 倪哲明, 夏明玉, 施炜, 钱萍萍.糠醛在Pt (111)表面的吸附和脱碳反应[J].物理化学学报, 2013, 29(9):1916-1922. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201309010.htm

    NI Zhe-ming, XIA Ming-yu, SHI Wei, QIAN Ping-ping. Adsorption and decarbonylation reaction of furfural on Pt (111) surface[J]. Acta Phys-Chim Sin, 2013, 29(9):1916-1922. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201309010.htm
    [20] ZHAO Y Y. Facile synthesis of Pd nanoparticles on SiO2 for hydrogenation of biomass-derived furfural[J]. Environ Chem Lett, 2014, 12(1):185-190. doi: 10.1007/s10311-013-0424-4
    [21] VILLAVERDE M M, BERTERO N M, GARETTO T F, MARCHI A J. Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts[J]. Catal Today, 2013, 213:87-92. doi: 10.1016/j.cattod.2013.02.031
    [22] SURAPAS S D E R. Hydrodeoxygenation of furfural over supported metal catalysts:A comparative study of Cu, Pd and Ni[J]. Catal Lett, 2011, 141(6):784-791. doi: 10.1007/s10562-011-0581-7
    [23] LIU D X, DMITRY Z, WU T P, RODRIGO J L L, JAMES A D, JEFFREY T M, CHRISTOPHER L M. Deactivation mechanistic studies of copper chromite catalyst for selective hydrogenation of 2-furfuraldehyde[J]. J Catal, 2013, 299:336-345. doi: 10.1016/j.jcat.2012.10.026
    [24] DELLEY B. From molecules to solids with the DMol (3) approach[J]. J Chem Phys, 2000, 113(18):7756-7764. doi: 10.1063/1.1316015
    [25] PERDEW J P, CHEWARY J A, VOSKO S H, JACKSON K A, PEDERSONE M R, SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B, 1992, 46(7):6671-6687.
    [26] GE Q, JENKINS S J, KING D A. Localisation of adsorbate-induced demagnetisation:CO chemisorbed on Ni (110)[J]. Chem Phys Lett, 2000, 327(3/4):125-130.
    [27] WANG S G, VASSILI V, DIONISIOS G V. Coverage-induced conformational effects on activity and selectivity:Hydrogenation and decarbonylation of furfural on Pd (111)[J]. ACS Catal, 2015, 5(1):104-112. doi: 10.1021/cs5015145
    [28] SURAPAS S, TRUNG P, TEERAWITE P, TAWAN S, RICHARD G M, DANIEL E R. Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd-Cu/SiO2 catalysts[J]. J Catal, 2011, 280(1):17-27. doi: 10.1016/j.jcat.2011.02.006
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  94
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-14
  • 修回日期:  2016-09-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-01-10

目录

    /

    返回文章
    返回