留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3O4(001)-B表面水煤气变换反应机理第一性原理研究

孟宇 刘小艳 陈娟 马亚军 赵姝

孟宇, 刘小艳, 陈娟, 马亚军, 赵姝. Fe3O4(001)-B表面水煤气变换反应机理第一性原理研究[J]. 燃料化学学报(中英文), 2020, 48(5): 601-609.
引用本文: 孟宇, 刘小艳, 陈娟, 马亚军, 赵姝. Fe3O4(001)-B表面水煤气变换反应机理第一性原理研究[J]. 燃料化学学报(中英文), 2020, 48(5): 601-609.
MENG Yu, LIU Xiao-yan, CHEN Juan, MA Ya-jun, ZHAO Shu. First-principle study on the reaction mechanism of water-gas shift on the Fe3O4 (001)-B surface[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 601-609.
Citation: MENG Yu, LIU Xiao-yan, CHEN Juan, MA Ya-jun, ZHAO Shu. First-principle study on the reaction mechanism of water-gas shift on the Fe3O4 (001)-B surface[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 601-609.

Fe3O4(001)-B表面水煤气变换反应机理第一性原理研究

基金项目: 

陕西省自然科学基础研究计划资助项目 2019JQ-905

陕西省自然科学基础研究计划资助项目 2018JZ2004

陕西省教育厅科研计划项目资助 19JS071

榆林市2019年科技计划项目 2019-83-1

榆林学院博士科研启动基金 17GK12

榆林学院博士科研启动基金 17GK13

煤转化国家重点实验室开放课题基金 J20-21-908

详细信息
    通讯作者:

    孟宇Tel; 15529967677. E-mail:mengyu@yulinu.edu.cn

  • 中图分类号: O643.32

First-principle study on the reaction mechanism of water-gas shift on the Fe3O4 (001)-B surface

Funds: 

Natural Science Foundation Research Program of Shaanxi Province 2019JQ-905

Natural Science Foundation Research Program of Shaanxi Province 2018JZ2004

Scientific Research Program Funded by Shaanxi Provincial Education Department 19JS071

Scientific Research Program Funded by Yulin Government 2019-83-1

PhD Research Startup Foundation of Yulin University 17GK12

PhD Research Startup Foundation of Yulin University 17GK13

the Foundation of State Key Laboratory of Coal Conversion J20-21-908

  • 摘要: 采用自旋极化的密度泛函理论方法系统地研究了Fe3O4(001)-B表面水煤气变换的反应机理,计算了整个反应历程。结果表明,对于Fe3O4(001)-B表面上的水煤气变换反应,氧化还原、联合和再生三种反应路径共存,但氧化还原和联合机理的有效能垒较低,因而更占优势。对于生成H2的基元反应,其活性受表面H浓度和催化剂表面O缺陷浓度影响;较高的表面H浓度和O缺陷浓度均有利于H2生成。这些结果有助于进一步认识铁氧催化剂上的水煤气变换反应机理。
  • 图  1  Fe3O4 (001)-B表面结构模型

    (a): top view; (b): side view

    Figure  1  Fe3O4 (001)-B surface model of represented Fe-based catalyst

    图  2  吸附的H2O、CO、CO2和H2的最稳定构型及吸附能

    (red ball for surface O, pink ball for O of H2O or CO2, light-blue ball for subsurface Fe, black-blue ball for surface Fe, white ball for H, black ball for C)

    Figure  2  Most stable adsorption structures and adsorption energies (eV) of H2, CO, CO2 and H2 on Fe3O4 (001)-B surface

    图  3  H2O在Fe3O4 (001)-B表面的直接解离和OH的辅助解离过程的构型及对应能量

    Figure  3  Structures and energies of direct dissociation of H2O to O* + 2H* and 2*OH to *H2O and *O

    图  4  CO2在Fe3O4 (001)-B表面生成的不同机理过程对应的构型及势能面能量

    Figure  4  Structures and energies of CO2 formation step for three reaction routes

    图  5  CO2在Fe3O4 (001)-B表面生成的不同机理势能面比较

    Figure  5  Potential energy surface comparison of CO2 formation step for three reaction routes

    图  6  表面吸附的H在Fe3O4 (001)-B表面迁移过程的结构和对应能量

    Figure  6  Structures and energies of H transfer step on Fe3O4 (001)-B surface

    图  7  表面吸附的H在Fe3O4 (001)-B表面迁移过程的势能面

    Figure  7  Potential energy surface of H transfer step on Fe3O4 (001)-B surface

    图  8  H2在高低覆盖度下在Fe3O4 (001)-B表面生成反应历程的结构和对应能量

    Figure  8  Structures and corresponding energies of H2 formation step on Fe3O4 (001)-B at two converges

    图  9  H与Fe3O4 (001)-B表面不同位点作用后的电子态密度分布

    Figure  9  Density of state of H interacted with different sites of Fe3O4 (001)-B

    表  1  H与Fe3O4 (001)-B表面作用后的Bader电荷转移分析

    Table  1  Bader charge analysis of H interacted with different sites of Fe3O4 (001)-B

    Fe Oa Ob
    △e 0.352 -0.667 -0.695
    下载: 导出CSV
  • [1] RHODES, C, HUTCHINGS G J, WARD A M. Water-gas shift reaction:Finding the mechanistic boundary[J]. Catal Today, 1995, 23:43-58. doi: 10.1016/0920-5861(94)00135-O
    [2] NEWSOME D S. The water-gas shift reaction[J]. Catal Rev, 1980, 21:275-318. doi: 10.1080/03602458008067535
    [3] O'BRIEN R J, XU L, SPICER R L, BAO S, MILBURN D R, DAVIS B H. Activity and selectivity of precipitated iron Fischer-Tropsch catalysts[J]. Catal Today, 1997, 36:325-334. doi: 10.1016/S0920-5861(96)00246-5
    [4] ANDREEV A, IDAKIEV V, MIHAJLOVA D, SHOPOV D. Iron-based catalysts for the water-gas shift reaction promoted by first-row transition metal oxides[J]. Appl Catal, 1986, 22:385-387. doi: 10.1016/S0166-9834(00)82645-7
    [5] RHODES C, WILLIAMS B P, KING F. Promotion of Fe3O4/Cr2O3 high temperature water gas shift catalyst[J]. Catal Commun, 2002, 3:381-384. doi: 10.1016/S1566-7367(02)00156-5
    [6] KUNDU M L, SENGUPTA A C, MAITI G C. Characterization of chromia-promoted γ-iron oxide catalysts and their CO conversion efficiency[J]. J Catal, 1988, 112:375-383. doi: 10.1016/0021-9517(88)90151-0
    [7] PATLOLLA A, CARINO E V, EHRLICH S N. Application of operando XAS, XRD, and Raman spectroscopy for phase speciation in water gas shift reaction catalysts[J]. Acs Catal, 2012, 2:2216-2223. doi: 10.1021/cs300414c
    [8] PATLOLLA A, CARINO E V, EHRLICH S N, STAVITSKI E, FRENKEL A I. Application of operando XAS, XRD, and Raman spectroscopy for phase speciation in water gas shift reaction catalysts[J]. ACS Catal, 2012, 2:2216-2223. doi: 10.1021/cs300414c
    [9] REDDY G K, BOOLCHAND P, SMIRNIOTIS P G. Unexpected behavior of copper in modified ferrites during high temperature WGS reaction aspects of Fe3+ Fe2+ redox chemistry from Mössbauer and XPS studies[J]. J Phys Chem C, 2012, 116:11019-11031. doi: 10.1021/jp301090d
    [10] CHERKEZOVA-ZHELEVA Z, MITOV I. In situ Mössbauer investigation of iron oxide catalyst in water gas shift reaction-impact of oxyreduction potential and temperature[J]. J Phys Conf Ser, 2010, 217:012044. doi: 10.1088/1742-6596/217/1/012044
    [11] GRILLO M E, FINNIS M W, RANKE W. Surface structure and water adsorption on Fe3O4 (111):Spin-density functional theory and on-site Coulomb interactions[J]. Phys Rev B, 2008, 77:075407. doi: 10.1103/PhysRevB.77.075407
    [12] HUANG D M, CAO D B, LI Y W, JIAO H J. Density function theory study of CO adsorption on Fe3O4 (111) surface[J]. J Phys Chem B, 2006, 110:13920-13925. doi: 10.1021/jp0568273
    [13] CHEN L, NI G, HAN B, ZHOU C G, WU J P. Mechanism of water gas shift reaction on Fe3O4 (111) Surface[J]. Acta Chim Sin, 2011, 69:393-398. http://d.old.wanfangdata.com.cn/Periodical/hxxb201104005
    [14] HUANG L, HAN B, ZHANG Q F, FAN M H, CHENG H S. Mechanistic study on water gas shift reaction on the Fe3O4 (111) reconstructed surface[J]. J Phys Chem C, 2015, 119:28934-28945. doi: 10.1021/acs.jpcc.5b09192
    [15] RIM K T, EOM D, CHAN S W. Scanning tunneling microscopy and theoretical study of water adsorption on Fe3O4:Implications for catalysis[J]. J Am Chem Soc, 2012, 134:18979-18985. doi: 10.1021/ja305294x
    [16] WANG G C, JIANG L, CAI Z S, PAN Y, ZHAO X, HUANG W, XIE K, LI Y, SUN Y, ZHONG B. Surface structure sensitivity of the water-gas shift reaction on Cu(hkl) surfaces:A theoretical study[J]. J Phys Chem B, 2003, 107(2):557-562. doi: 10.1021/jp0215567
    [17] WANG G C, NAKAMURA J. Structure sensitivity for forward and reverse water-gas shift reactions on copper surfaces:A DFT study[J]. J Phys Chem Lett, 2010, 1(20):3053-3057. doi: 10.1021/jz101150w
    [18] WANG, Y X, WANG G C. A systematic theoretical study of water gas shift reaction on Cu(111) and Cu(110):Potassium effect[J]. ACS Catal, 2019, 9:2261-2274. doi: 10.1021/acscatal.8b04427
    [19] PARKINSON G S, MANZ T A, NOVOTNY Z, SPRUNGER P T, DIEBOLD U. Antiphase domain boundaries at the Fe3O4 (001) surface[J]. Phy Rev B, 2012, 85(19):195451-195457. doi: 10.1103/PhysRevB.85.195451
    [20] PENTCHEVA R, MORITZ W, RUNDGREN J, FRANK S, SCHRUPP D, SCHEFFLER M. A combined DFT/Leed-approach for complex oxide surface structure determination:Fe3O4(001)[J]. Surf Sci, 2008, 602(7):1299-1305. doi: 10.1016/j.susc.2008.01.006
    [21] NOVOTNY Z, MULAKALURI N, EDES Z, SCHMID M, PENTCHEVA R, DIEBOLD U. Probing the surface phase diagram of Fe3O4(001) towards the fe-rich limit:Evidence for progressive reduction of the surface[J]. Phys Rev B, 2013, 87(19):2329-2337. https://www.researchgate.net/publication/240918793_Probing_the_surface_phase_diagram_of_Fe3O4001_towards_the_Fe_rich_limit_Evidence_for_progressive_reduction_of_the_surface?ev=auth_pub
    [22] KRESSE G, FURTHMÜLLER J. Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6:15-50. doi: 10.1016/0927-0256(96)00008-0
    [23] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54:11169-11186. doi: 10.1103/PhysRevB.54.11169
    [24] BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50:17953-17979. doi: 10.1103/PhysRevB.50.17953
    [25] KRESSE G, HAFNER J. First-principles study of the adsorption of atomic H on Ni (111), (100) and (110)[J]. Surf Sci, 2000, 459:287-302. doi: 10.1016/S0039-6028(00)00457-X
    [26] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77:3865- 3868. doi: 10.1103/PhysRevLett.77.3865
    [27] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1997, 78:1396. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212186302/
    [28] METHFESSEL M, PAXTON A T. High-precision sampling for Brillouin-zone integration in metals[J]. Phys Rev B, 1989, 40:3616. doi: 10.1103/PhysRevB.40.3616
    [29] JÓNSSON H, MILLS G, JACOBSEN K W. In Classical and Quantum Dynamics in Condensed Phase Simulations[M]. Singapore:World Scientific, 1998:385.
    [30] HENKELMANN G, UBERUAGA B P, JNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys, 2000, 113:9901-9904. doi: 10.1063/1.1329672
    [31] REDDY G K, SMIRNIOTIS P G. Effect of copper as a dopant on the water gas shift activity of Fe/Ce and Fe/Cr modified ferrites[J]. Catal Lett, 2011, 141:27-32. doi: 10.1007/s10562-010-0465-2
    [32] HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for Bader decomposition of charge density[J]. Comput Mater Sci, 2006, 36(3):0-360. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b349feb49fca205cfb22ce02f8e04cf
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  102
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-20
  • 修回日期:  2020-04-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-05-10

目录

    /

    返回文章
    返回