留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3O4@PI催化剂的制备及其费托合成性能

马龙 张玉玺 高新华 马清祥 张建利 赵天生

马龙, 张玉玺, 高新华, 马清祥, 张建利, 赵天生. Fe3O4@PI催化剂的制备及其费托合成性能[J]. 燃料化学学报(中英文), 2020, 48(7): 813-820.
引用本文: 马龙, 张玉玺, 高新华, 马清祥, 张建利, 赵天生. Fe3O4@PI催化剂的制备及其费托合成性能[J]. 燃料化学学报(中英文), 2020, 48(7): 813-820.
MA Long, ZHANG Yu-xi, GAO Xin-hua, MA Qing-xiang, ZHANG Jian-li, ZHAO Tian-sheng. Preparation of Fe3O4@PI and its catalytic performances in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 813-820.
Citation: MA Long, ZHANG Yu-xi, GAO Xin-hua, MA Qing-xiang, ZHANG Jian-li, ZHAO Tian-sheng. Preparation of Fe3O4@PI and its catalytic performances in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 813-820.

Fe3O4@PI催化剂的制备及其费托合成性能

基金项目: 

宁夏重点研发计划 2018BEE03010

国家自然科学基金 21968025

国家自然科学基金 21965029

详细信息
  • 中图分类号: O643

Preparation of Fe3O4@PI and its catalytic performances in Fischer-Tropsch synthesis

Funds: 

the Key R & D Project of Ningxia 2018BEE03010

the National Natural Science Foundation of China 21968025

the National Natural Science Foundation of China 21965029

More Information
  • 摘要: 分别采用水热、水热-包覆、球磨法制备了Fe3O4、聚酰亚胺(PI)改性的Fe3O4@PI和Fe3O4-PI催化剂用于费托合成反应,对比研究了PI改性及其含量变化对Fe基催化剂催化CO加氢产物分布的影响规律。结合XRD、SEM、TEM、H2-TPR、CO-TPD、FT-IR、XPS、TG和接触角实验等手段对催化剂样品进行了表征。结果表明,Fe3O4、Fe3O4@PI和Fe3O4-PI样品均为球形颗粒;PI改性促进了Fe3O4的还原,亲水性增强。Fe3O4@PI样品中,PI均匀包覆于Fe3O4表面,具有较好的热稳定性;与Fe3O4、Fe3O4-PI相比,Fe3O4@PI样品CO吸附增强。在CO加氢反应中,与Fe3O4相比,PI改性的Fe3O4@PI和Fe3O4-PI样品催化活性下降,二次加氢能力受到抑制,烯烃选择性提高;Fe3O4@PI样品烯烃选择性增加明显,烯烷比(O/P)由改性前的0.50提高至2.15;适宜含量的PI改性促进C5+烃生成。
  • 图  1  样品的XRD谱图

    Figure  1  XRD patterns of the fresh catalyst samples

    图  2  样品的SEM照片

    Figure  2  SEM images of the fresh catalyst samples

    (a): Fe3O4; (b): Fe3O4@PI-1;(c): Fe3O4@PI-2;(d): Fe3O4@PI-3;(e): Fe3O4-PI

    图  3  样品的TEM照片

    Figure  3  TEM images of the fresh catalyst samples

    (a): Fe3O4; (b): Fe3O4@PI-1;(c): Fe3O4@PI-2;(d): Fe3O4@PI-3;(e): Fe3O4-PI

    图  4  样品的热重分析曲线

    Figure  4  Thermogravimetric analysis of catalyst samples

    图  5  样品的红外光谱谱图

    Figure  5  FT-IR spectra of catalyst samples

    图  6  样品的H2-TPR谱图

    Figure  6  H2-TPR profiles of the catalyst samples

    图  7  样品的CO-TPD谱图

    Figure  7  CO-TPD curves of the catalyst samples

    图  8  催化剂样品的接触角

    Figure  8  Contact angle of the catalyst samples

    (a): Fe3O4; (b): Fe3O4-PI; (c): Fe3O4@PI-1; (d): Fe3O4@PI-2; (e): Fe3O4@PI-3

    图  9  反应前后催化剂样品的XPS全谱图

    Figure  9  XPS survey spectra of the fresh (a) and used (b) catalyst samples

    a: Fe3O4; b: Fe3O4@PI-1; c: Fe3O4@PI-2; d: Fe3O4@PI-3; e: Fe3O4-PI

    图  10  Fe 2p反应前后样品的XPS谱图

    Figure  10  Fe 2p XPS spectra of the fresh:

    a: Fe3O4; b: Fe3O4@PI-1; c: Fe3O4@PI-2; d: Fe3O4@PI-3; e: Fe3O4-PI and used: f: Fe3O4; g: Fe3O4@PI-1; h: Fe3O4@PI-2; i: Fe3O4@PI-3; j: Fe3O4-PI catalyst samples

    图  11  催化剂CO加氢反应性能

    Figure  11  Catalytic performances of the catalyst samples

    reaction conditions: 300℃, 1.5 MPa, 1000h-1, H2/CO=2, TOS=45h

    表  1  样品表面元素组成

    Table  1  Surface composition of the fresh and used catalyst samples

    Catalyst Surface atom content wmol/%a
    Fe C O N
    Fe3O4 3.82 23.15 73.03 -
    Fe3O4@PI-1 6.07 56.80 32.02 5.11
    Fe3O4@PI-2 10.24 48.71 36.95 4.10
    Fe3O4@PI-3 10.61 47.65 37.51 4.23
    Fe3O4-PI 5.30 68.62 24.50 1.58
    AR-Fe3O4 12.49 52.03 35.48 -
    AR-Fe3O4@PI-1 19.41 42.09 36.75 1.75
    AR-Fe3O4@PI-2 16.24 42.74 39.31 1.71
    AR-Fe3O4@PI-3 23.47 27.38 47.02 2.13
    AR-Fe3O4-PI 21.91 32.95 43.65 1.49
    a: calculated from the peak area of XPS spectra
    下载: 导出CSV
  • [1] LU Y W, YAN Q G, HAN J, CAO B B, STREET J, YU F. Fischer-Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst[J]. Fuel, 2017, 193:369-384. doi: 10.1016/j.fuel.2016.12.061
    [2] TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas:A review[J]. ACS Catal, 2013, 3(9):2130-2149. doi: 10.1021/cs4003436
    [3] YANG J, MA W, CHENG D, HOLMEN A, DAVIS B H. Fischer-Tropsch synthesis:A review of the effect of CO conversion on methane selectivity[J]. Appl Catal A:Gen, 2014, 470:250-260. doi: 10.1016/j.apcata.2013.10.061
    [4] LI Z H, LIU R J, XU Y, MA X B. Enhanced Fischer-Tropsch synthesis performance of iron-based catalysts supported on nitric acid treated N-doped CNTs[J]. Appl Surf Sci, 2015, 347:643-650. doi: 10.1016/j.apsusc.2015.04.169
    [5] YAN B, MA L, GAO X H, ZHANG J L, MA Q X, ZHAO T S. Amphiphobic surface fabrication of iron catalyst and effect on product distribution of Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 2019, 585:117184. doi: 10.1016/j.apcata.2019.117184
    [6] TORRES GALVIS H M, KOEKEN A C J, BITTER J H, DAVIDIAN T, RUITENBEEK M, IULIAN DUGULAN A, DE JONG K P. Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Catal Today, 2013, 215:95-102. doi: 10.1016/j.cattod.2013.03.018
    [7] WANG H Y, HUANG S Y, WANG J, ZHAO Q, WANG Y F, WANG Y, MA X B. Effect of Ca promoter on the structure and catalytic behavior of FeK/Al2O3 catalyst in Fischer-Tropsch synthesis[J]. ChemCatChem, 2019, 11(14):3220-3226. doi: 10.1002/cctc.201900501
    [8] CHEN X Q, DENG D H, PAN X L, HU Y F, BAO X H. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins[J].Chem Commun, 2015, 51(1):217-220. doi: 10.1039/C4CC06600F
    [9] AN B, CHENG K, WANG C, WANG Y, LIN W B. Pyrolysis of metal-organic frameworks to Fe3O4@Fe5C2 core-shell nanoparticles for Fischer-Tropsch synthesis[J]. ACS Catal, 2016, 6(6):3610-3618. doi: 10.1021/acscatal.6b00464
    [10] TIAN Z P, WANG C G, SI Z, MA L L, CHEN L G, LIU Q Y, ZHANG Q, HUANG H Y. Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method[J]. Appl Catal A:Gen, 2017, 541:50-59. doi: 10.1016/j.apcata.2017.05.001
    [11] YUAN Y, HUANG S Y, WANG H Y, WANG Y F, WANG J, LV J, LI Z H, MA X B. Monodisperse nano-Fe3O4 on α-Al2O3 catalysts for Fischer-Tropsch synthesis to lower olefins:Promoter and size effects[J]. ChemCatChem, 2017, 9(16):3144-3152. doi: 10.1002/cctc.201700792
    [12] LIU Y, CHEN J F, BAO J, ZHANG Y. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catal, 2015, 5(6):3905-3909. doi: 10.1021/acscatal.5b00492
    [13] MARTÍNEZ DEL MONTE D, VIZCAÍNO A J, DUFOUR J, C, MARTOS C. Effect of K, Co and Mo addition in Fe-based catalysts for aviation biofuels production by Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2019, 194:106102. doi: 10.1016/j.fuproc.2019.05.025
    [14] GU B, HE S, ZHOU W, KANG J C, CHENG K, ZHANG Q H, WANG Y. Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas[J]. J Energy Chem, 2017, 26:608-615. doi: 10.1016/j.jechem.2017.04.009
    [15] YU X F, ZHANG J L, WANG X, MA Q X, GAO X H, XIA H Q, LAI X Y, FAN S B, ZHAO T S. Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity[J]. Appl Catal B:Environ, 2018, 232:420-428. doi: 10.1016/j.apcatb.2018.03.048
    [16] SHI L H, CHEN J G, FANG K G, SUN Y H. CH3-modified Co/Ru/SiO2 catalysts and the performances for Fischer-Tropsch synthesis[J]. Fuel, 2008, 87(4/5):521-526. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fb8b4a688fc0e5d4b0091bb4512000e0
    [17] 张娟, 陈建刚, 陈从标, 王占修, 王俊刚, 孙予罕. Co基催化剂上费托合成中烯烃二次反应行为的研究[J].石油化工, 2010, 39(8):855-860. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhg201008005

    ZHANG Juan, CHEN Jian-gang, CHEN Cong-biao, WANG Zhan-xiu, WANG Jun-gang, SUN Yu-han. Secondary reaction of olefin over Co-based catalyst for Fischer-Tropsch synthesis[J]. Petrochem Technol, 2010, 39(8):855-860. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhg201008005
    [18] 高军虎, 吴宝山, 周利平, 杨勇, 郝栩, 徐元源, 李永旺.极性溶剂相费托合成的产物分布特征[J].催化学报, 2011, 32(12):1790-1802. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201112004

    GAO Jun-hu, WU Bao-shan, ZHOU Li-ping, YANG Yong, HAO Xu, XU Yuan-yuan, LI Yong-wang. Product distribution of Fischer-Tropsch synthesis in polar liquids[J]. Chin J Catal, 2011, 32(12):1790-1802. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201112004
    [19] 王鲁凯, 冯军宗, 李良军, 姜勇刚, 冯坚.疏水改性聚酰亚胺的研究进展[J].材料导报, 2018, 32(S2):264-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb2018z2061

    WANG Lu-kai, FENG Jun-zong, LI Liang-jun, JIANG Yong-gang, FENG Jian. Research progress on hydrophobic modification of polyimide[J]. Mater Rep, 2018, 32(S2):264-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb2018z2061
    [20] WANG L, LU J J, LIU M Q, LIN L, LI J J. Preparation of porous polyimide microspheres by thermal degradation of block copolymers[J]. Particuology, 2014, 14(3):63-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgklxb-e201403010
    [21] QU C Y, LIU C W, ZHOU H R, YU W M, WANG D Z, WANG D X. One-step synthesis of PI@Fe3O4 composite microspheres and practical application in Cu(Ⅱ) ion adsorption[J]. RSC Adv, 2015, 5(108):88943-88949. doi: 10.1039/C5RA18756G
    [22] YAN H J, CHEN Y, XU S M. Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light[J]. Int J Hydrogen Energy, 2012, 37(1):125-133. doi: 10.1016/j.ijhydene.2011.09.072
    [23] ZENG S Z, GUO L M, CUI F M, GAO Z, ZHOU J, SHI J L. Template-free synthesis of crystalline polyimide spheres with radiate branches[J]. Mater Lett, 2010, 64(5):625-627. doi: 10.1016/j.matlet.2009.12.024
    [24] NI Z J, QIN H F, KANG S F, BAI J R, WANG Z L, LI Y G, ZHENG Z, LI X. Effect of graphitic carbon modification on the catalytic performance of Fe@SiO2-GC catalysts for forming lower olefins via Fischer-Tropsch synthesis[J]. J Colloid Interf Sci, 2018, 516:16-22. doi: 10.1016/j.jcis.2018.01.017
    [25] 张建利, 王旭, 马丽萍, 于旭飞, 马清祥, 范素兵, 赵天生.层状K/Mg-Fe-Al催化剂的制备及其CO加氢性能研究[J].燃料化学学报, 2017, 45(12):1489-1498. doi: 10.3969/j.issn.0253-2409.2017.12.011

    ZHANG Jian-li, WANG Xu, MA Li-ping, YU Xu-fei, MA Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation[J]. J Fuel Chem Technol, 2017, 45(12):1489-1498. doi: 10.3969/j.issn.0253-2409.2017.12.011
    [26] WU X, MA H F, ZHANG H T, QIAN W X, LIU D H, SUN Q W, YING W Y. High-temperature Fischer-Tropsch synthesis of light olefins over nano-Fe3O4@MnO2 core-shell catalysts[J]. Ind Eng Chem Res, 2019, 58(47):21350-21362. doi: 10.1021/acs.iecr.9b04221
    [27] ROMERO-SARRIA F, BOBADILLA L F, JIMÉNEZ BARRERA E M, ODRIOZOLA J A. Experimental evidence of HCO species as intermediate in the Fischer-Tropsch reaction using operando techniques[J]. Appl Catal B:Environ, 2020, 272:119032. doi: 10.1016/j.apcatb.2020.119032
    [28] DING M Y, YANG Y, WU B S, LI Y W, WANG T J, MA L L. Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst[J]. Appl Energy, 2015, 160:982-989. doi: 10.1016/j.apenergy.2014.12.042
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  44
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-03
  • 修回日期:  2020-06-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回