留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对TiO2-ZrO2复合氧化物性质及其对十八醇脱水制十八烯反应性能的影响

段廷明 肖勇 张国权 贾丽涛 侯博 李德宝

段廷明, 肖勇, 张国权, 贾丽涛, 侯博, 李德宝. 焙烧温度对TiO2-ZrO2复合氧化物性质及其对十八醇脱水制十八烯反应性能的影响[J]. 燃料化学学报(中英文), 2020, 48(5): 626-631.
引用本文: 段廷明, 肖勇, 张国权, 贾丽涛, 侯博, 李德宝. 焙烧温度对TiO2-ZrO2复合氧化物性质及其对十八醇脱水制十八烯反应性能的影响[J]. 燃料化学学报(中英文), 2020, 48(5): 626-631.
DUAN Ting-ming, XIAO Yong, ZHANG Guo-quan, JIA Li-tao, HOU Bo, LI De-bao. Effect of calcination temperature on the properties of the mixed TiO2-ZrO2 oxides and their performance in the dehydration of octadecanol to octadecene[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 626-631.
Citation: DUAN Ting-ming, XIAO Yong, ZHANG Guo-quan, JIA Li-tao, HOU Bo, LI De-bao. Effect of calcination temperature on the properties of the mixed TiO2-ZrO2 oxides and their performance in the dehydration of octadecanol to octadecene[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 626-631.

焙烧温度对TiO2-ZrO2复合氧化物性质及其对十八醇脱水制十八烯反应性能的影响

详细信息
    通讯作者:

    肖勇E-mail:xiaoyong@sxice.ac.cn

  • 中图分类号: O643.3

Effect of calcination temperature on the properties of the mixed TiO2-ZrO2 oxides and their performance in the dehydration of octadecanol to octadecene

  • 摘要: 通过在ZrO2中掺杂TiO2,并在350-500 ℃下焙烧,制备了系列TiO2-ZrO2复合氧化物催化剂,将其应用于十八醇脱水制十八烯反应。随焙烧温度的升高,催化剂表面的Lewis酸性位量逐渐增加,450 ℃焙烧的催化剂Lewis酸性位量最多,焙烧温度继续升高则Lewis酸性位量降低;催化剂中未发现Brønsted酸性位。焙烧温度≤400 ℃的TiO2-ZrO2复合氧化物形成Ti-O-Zr键,呈无定形态;焙烧温度>400 ℃的TiO2-ZrO2复合氧化物呈单斜相和四方相ZrO2晶型。晶相结构和酸性位量综合影响催化剂的十八醇脱水性能,具有单斜相和四方相ZrO2晶型的催化剂上酸性位活性很低,具有无定形相的催化剂上酸性位活性显著增加,400 ℃焙烧的催化剂1-十八烯收率最高。
  • 图  1  催化剂的XRD谱图

    a: 3%TiO2-ZrO2-350℃; b: 3%TiO2-ZrO2-400℃; c: 3%TiO2-ZrO2-450℃; d: 3%TiO2-ZrO2-500℃

    Figure  1  XRD patterns of the catalysts

    图  2  催化剂的拉曼光谱谱图

    a: 3%TiO2-ZrO2-350℃; b: 3%TiO2-ZrO2-400℃; c: 3%TiO2-ZrO2-450℃; d: 3%TiO2-ZrO2-500℃

    Figure  2  Raman spectra of the catalysts

    图  3  催化剂的Zr 3d (a)、Ti 2p (b)的XPS谱图

    a: 3%TiO2-ZrO2-350℃; b: 3%TiO2-ZrO2-400℃; c: 3%TiO2-ZrO2-450℃; d: 3%TiO2-ZrO2-500℃

    Figure  3  Zr 3d (a) and Ti 2p (b) binding energy spectra of the catalysts

    图  4  催化剂的Py-FTIR谱图

    a: 3%TiO2-ZrO2-350℃; b: 3%TiO2-ZrO2-400℃; c: 3%TiO2-ZrO2-450℃; d: 3%TiO2-ZrO2-500℃

    Figure  4  Py-FTIR spectra of the catalysts

    图  5  催化剂Lewis酸量与十八烯收率的关系

    Figure  5  Relationship between product yield and the amount of Lewis acid

    total: the sum of 1-octadecene and 2-octadecene; 2-octadecene: the sum of trans-2- octadecene and cis-2-octadecene
    a: 3%TiO2-ZrO2-350℃; b: 3%TiO2-ZrO2-400℃; c: 3%TiO2-ZrO2-450℃; d: 3%TiO2-ZrO2-500℃

    表  1  催化剂的织构性质

    Table  1  Textural parameters of the 3%TiO2-ZrO2 composite oxides calcined at different temperatures

    Sample ABET / (m2·g-1) Pore volumev/(cm3·g-1) Average pore diameterd/nm
    3%TiO2-ZrO2-350℃ 198 0.197 4.21
    3%TiO2-ZrO2-400℃ 190 0.149 3.46
    3%TiO2-ZrO2-450℃ 128 0.214 6.69
    3%TiO2-ZrO2-500℃ 72 0.179 10.1
    下载: 导出CSV

    表  2  催化剂的Lewis酸量和BrØnsted酸量

    Table  2  Acid amount of Lewis and BrØnsted acid on the catalysts

    Catalyst Acid amount /(μmol·g-1)
    B L total
    3%TiO2-ZrO2-350℃ - 93 93
    3%TiO2-ZrO2-400℃ - 109 109
    3%TiO2-ZrO2-450℃ - 136 136
    3%TiO2-ZrO2-500℃ - 71 71
    下载: 导出CSV

    表  3  催化剂的十八醇转化率及产物选择性

    Table  3  Catalytic performance of the catalysts

    Catalyst Conversionx/% Selectivitys/%
    1-18C= trans-2-18C= cis-2-18C= 18C-O-C18 18HC=O others
    3%TiO 2-ZrO 2-350℃ 41.44 72.61 5.43 5.35 5.85 1.46 9.30
    3%TiO 2-ZrO 2-400℃ 79.21 67.28 12.84 13.47 0.08 0.28 6.54
    3%TiO 2-ZrO 2-450℃ 40.37 55.43 11.31 10.38 6.58 0.37 15.93
    3%TiO 2-ZrO 2-500℃ 20.45 53.46 4.09 3.58 22.30 0.71 15.86
    reaction conditions:t=300℃, LHSV=0.6h -1, N2 GHSV=400h-1, atmospheric pressure, 1-18C=: linear 1-octadecene, trans-2-18C=: trans-2-octadecene, cis-2-18C=: cis-2-octadecene, 18C-O-C18: dioctadecyl ether, 18HC=O: stearaldehyde, others:by-products
    下载: 导出CSV
  • [1] ECHAROJ S, SANTIKUNAPORN M, CHAVADEJ S. Transformation of bioderived 1-decanol to diesel-like fuel and biobased oil via dehydration and oligomerization reactions[J]. Energy Fuels, 2017, 31(9):9465-9476. doi: 10.1021/acs.energyfuels.7b01247
    [2] 李影辉, 曾群英, 万书宝, 迟克彬, 杜海. α-烯烃合成工艺及市场[J].精细石油化工进展, 2004, 5(11):12-16. doi: 10.3969/j.issn.1009-8348.2004.11.004

    LI Ying-hui, ZENG Qun-ying, WAN Shu-bao, CHI Ke-bin, DU Hai. Synthesis process and market of α-olefin[J]. Adv Fine Petrochem, 2004, 5(11):12-16. doi: 10.3969/j.issn.1009-8348.2004.11.004
    [3] 李影辉, 曾群英, 肖海成, 万书宝, 迟克彬. α-烯烃合成工艺技术进展[J].天然气化工, 2005, 30(2):55-58. doi: 10.3969/j.issn.1001-9219.2005.02.013

    LI Ying-hui, ZENG Qun-ying, XIAO Hai-cheng, WAN Shu-bao, CHI Ke-bin. Progress in alpha olefin synhesis processes[J]. Nat Gas Chem Ind, 2005, 30(2):55-58. doi: 10.3969/j.issn.1001-9219.2005.02.013
    [4] 赵惠萍. 1-辛烯生产工艺[J].石化技术, 2006, (1):59-64. doi: 10.3969/j.issn.1006-0235.2006.01.017

    ZHAO Hui-ping. Octene-1 manufacturing process[J]. Petrochem Ind Technol, 2006, (1):59-64. doi: 10.3969/j.issn.1006-0235.2006.01.017
    [5] 郑来昌, 王如文, 杨小辉, 杨克.植物油生产α-烯烃技术进展[J].润滑油, 2015, 30(4):1-4. doi: 10.3969/j.issn.1002-3119.2015.04.001

    ZHENG Lai-chang, WANG Ru-wen, YANG Xiao-hui, YANG Ke. Technical progress of α-olefin production from vegetabe oil[J]. Lubr Oil, 2015, 30(4):1-4. doi: 10.3969/j.issn.1002-3119.2015.04.001
    [6] SONG W, LIU Y, BARATH E, WANG L L, ZHAO C, MEI D, LERCHER J A. Dehydration of 1-octadecanol over H-BEA:A combined experimental and computational study[J]. ACS Catal, 2016, 6(2):878-889. doi: 10.1021/acscatal.5b01217
    [7] CHOKKARAM S, DAVIS B H. Dehydration of 2-octanol over zirconia catalysts:Influence of crystal structure, sulfate addition and pretreatment[J]. J Mol Catal A:Chem, 1997, 118(1):89-99. doi: 10.1016/S1381-1169(96)00380-9
    [8] KOSTESTKYY P, YU J, GORTE R J, MPOURMPAKIS G. Structure-activity relationships on metal-oxides:Alcohol dehydration[J]. Catal Sci Technol, 2014, 4:3861-3869. doi: 10.1039/C4CY00632A
    [9] SATO S, TAKAHASHI R, SODESAWA T, YAMAMOTO N. Dehydration of 1, 4-butanediol into 3-buten-1-ol catalyzed by ceria[J]. Catal Commun, 2004, 5(8):397-400. doi: 10.1016/j.catcom.2004.05.006
    [10] CHEN B H, LU J Z, WU L P, CHAO Z S. Dehydration of bio-ethanol to ethylene over iron exchanged HZSM-5[J]. Chin J Catal, 2016, 37(11):1941-1948. doi: 10.1016/S1872-2067(16)62524-X
    [11] TAKAHASHI N, SUDA A, HACHISUKA I, SUGIURA M, SOBUKAWA H, SHINJOH H. Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mixed oxides[J]. Appl Catal B:Environ, 2007, 72(1/2):187-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0779edbd3e7600fc0cd22d942cabf2c
    [12] MAITY S, RANA M, BEJ S, ANCHEYTA-JUAREZ J, DHAR G M, RAO T P. TiO2-ZrO2 mixed oxide as a support for hydrotreating catalyst[J]. Catal lett, 2001, 72:115-119. doi: 10.1023/A:1009045412926
    [13] LI K T, WANG I, WU J C. Surface and catalytic properties of TiO2-ZrO2 mixed oxides[J]. Catal Surv Asia, 2012, 16(4):240-248. doi: 10.1007/s10563-012-9147-y
    [14] MANRIQUEZ M, LOPEZ T, GOMEZ R, NAVARRETE J. Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties[J]. J Mol Catal A:Chem, 2004, 220(2):229-237. doi: 10.1016/j.molcata.2004.06.003
    [15] AN M, LI L, CAO Y, MA F, LIU D, GU F. Coral reef-like Pt/TiO2-ZrO2 porous composites for enhanced photocatalytic hydrogen production performance[J]. Mol Catal, 2019, 475:110482. doi: 10.1016/j.mcat.2019.110482
    [16] FAN M, SI Z, SUN W, ZHANG P. Sulfonated ZrO2-TiO2 nanorods as efficient solid acid catalysts for heterogeneous esterification of palmitic acid[J]. Fuel, 2019, 252:254-261. doi: 10.1016/j.fuel.2019.04.121
    [17] 梁晓峰, 杨世源, 王军霞.醇热合成ZrO2粉末的X射线衍射及拉曼散射特征[J].人工晶体学报, 2008, 37(4):1037-1041. doi: 10.3969/j.issn.1000-985X.2008.04.054

    LIANG Xiao-feng, YANG Shi-yuan, WANG Jun-xia. X-ray and raman studies of ZrO2 particles synthesized by alcohol-thermal method[J]. J Synth Cryst, 2008, 37(4):1037-1041. doi: 10.3969/j.issn.1000-985X.2008.04.054
    [18] POWERS D, GRAY H B, Characterization of the thermal dehydration of zirconium oxide halide octahydrates[J]. Inorg Chem, 1973, 12(11):2721-2726. doi: 10.1021/ic50129a045
    [19] KILO M, SCHILD C, WOKAUN A, BAIKER A. Surface oxidic phases of binary and ternary zirconia-supported metal catalysts investigated by raman spectroscopy[J]. J Chem Soc, Faraday Trans, 1992, 88:1453-1457. doi: 10.1039/ft9928801453
    [20] MICIUKIEWICZ J, MANG T, KNOZINGER H. Raman spectroscopy characterization of molybdena supported on titania-zirconia mixed oxide[J]. Appl Catal A:Gen, 1995, 122(2):151-159. doi: 10.1016/0926-860X(94)00236-3
    [21] 孙传智. TiO2基催化剂的制备、表征及其在环境催化中应用的基础研究[M].南京:南京大学, 2011.

    SUN Chuan-zhi. Synthesis and Characterization of Titanium Oxide Based Catalysts and Their Application in the Environmental Catalysis[M]. Nanjing:Nanjing University, 2011.
    [22] REDDY B M, CHOWDHURY B, SMIRNIOTIS P G. An XPS study of the dispersion of MoO3 on TiO2-ZrO2, TiO2-SiO2, TiO2-Al2O3, SiO2-ZrO2, and SiO2-TiO2-ZrO2 mixed oxides[J]. Appl Catal A:Gen, 2001, 211(1):19-30. doi: 10.1016/S0926-860X(00)00834-6
    [23] MULLINS W, AVERBACH B. Bias-reference X-Ray photoelectron spectroscopy of sapphire and yttrium aluminum garnet crystals[J]. Surf Sci, 1988, 206(1/2):29-40. https://www.sciencedirect.com/science/article/pii/003960288890012X
    [24] STEPHENSON D, BINKOWSKI N. X-ray photoelectron spectroscopy of silica in theory and experiment[J]. J Non-Cryst Solids, 1976, 22(2):399-421. doi: 10.1016/0022-3093(76)90069-7
    [25] BARTHOS R, LONYI F, ENGELHARDT J, VALYON J. A study of the acidic and catalytic properties of pure and sulfated zirconia-titania and zirconia-silica mixed oxides[J]. Top Catal, 2000, 10:79-87. doi: 10.1023/A:1019112017065
    [26] GOTT T, OYAMA S T. A general method for determining the role of spectroscopically observed species in reaction mechanisms:Analysis of coverage transients(ACT)[J]. J Catal, 2009, 263(2):359-371. doi: 10.1016/j.jcat.2009.02.028
    [27] HONG E, BAEK S W, SHIN M, SUH Y W, SHIN C H. Effect of aging temperature during refluxing on the textural and surface acidic properties of zirconia catalysts[J]. J Ind Eng Chem, 2017, 54:137-145. doi: 10.1016/j.jiec.2017.05.026
    [28] EMEIS C. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141:347-354. doi: 10.1006/jcat.1993.1145
    [29] TANABE K, SUMIYOSHI T, SHIBATA K, KIYOURA T, KITAGAWA J. A new hypothesis regarding the surface acidity of binary metal oxides[J]. Bull Chem Soc Jpn, 1974, 47:1064-1066. doi: 10.1246/bcsj.47.1064
    [30] DAS D, MISHRA H K, PARIDA K M. Preparation, physico-chemical characterization and catalytic activity of sulphated ZrO2-TiO2 mixed oxides[J]. J Mol Catal A:Chem, 2002, 189:271-282. doi: 10.1016/S1381-1169(02)00363-1
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  77
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-17
  • 修回日期:  2020-03-19
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-05-10

目录

    /

    返回文章
    返回