留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels

Maliwan Subsadsana Pitsanuphong Kham-or Pakpoom Sangdara Pirom Suwannasom Chalerm Ruangviriyachai

Maliwan Subsadsana, Pitsanuphong Kham-or, Pakpoom Sangdara, Pirom Suwannasom, Chalerm Ruangviriyachai. Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 805-816.
Citation: Maliwan Subsadsana, Pitsanuphong Kham-or, Pakpoom Sangdara, Pirom Suwannasom, Chalerm Ruangviriyachai. Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 805-816.

详细信息
  • 中图分类号: O643

Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels

More Information
    Corresponding author: Chalerm Ruangviriyachai, Tel: +660 8196 49461, Fax: 043202373, E-mail: chal_ru@kku.ac.th
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1  XRD patterns at (a) high diffraction angle and (b) low diffraction angle of ZSM-5/MCM-41 composite prepared at pH value 9.5 with different crystallization times

    a: 12 h; b: 24 h; c: 48 h; d: 72 h

    Figure  2  XRD patterns at (a) high diffraction angle and (b) low diffraction angle of ZSM-5/MCM-41 composite prepared with crystallization time of 48 h at different pH

    a: 8.5; b: 9.5; c: 10.5; d: 11.5

    Figure  3  XRD patterns of catalysts

    a: ZSM-5; b: ZSM-5/MCM-41; c: NiMo-ZSM-5/ MCM-41; d: NiW-ZSM-5/MCM-41

    Figure  4  SEM images of catalysts

    (a): ZSM-5; (b): NiMo-ZSM-5; (c): NiW-ZSM-5; (d): ZSM-5/MCM-41; (e): NiMo-ZSM-5/MCM-41; (f): NiW-ZSM-5/MCM-41

    Figure  5  TEM images and EDX spectra of catalysts

    (a): ZSM-5/MCM-41; (b): NiMo-ZSM-5/MCM-41; (c): NiW-ZSM-5/MCM-41

    Figure  6  N2 adsorption-desorption isotherms of catalysts

    (a): MCM-41; (b): ZSM-5; (c): ZSM-5/MCM-41; (d): NiMo-ZSM-5/MCM-41; (e): NiW-ZSM-5/MCM-41

    Figure  7  NH3-TPD profiles of catalysts

    a: MCM-41; b: ZSM-5; c: ZSM-5/MCM-41; d: NiMo-ZSM-5/MCM-41; e: NiW-ZSM-5/MCM-41

    Figure  8  Comparison on effect of different catalysts used on the production of liquid fuels

    Figure  9  SimDis GC-FID chromatograms of products obtained after distillation in the conversion of CPO by using catalysts

    (a): NiMo-ZSM-5/MCM-41 (gasoline); (b): NiW-ZSM-5/MCM-41 (gasoline); (c): NiMo-ZSM-5/MCM-41 (kerosene); (d): NiW-ZSM-5/MCM-41 (kerosene); (e): NiMo-ZSM-5/MCM-41 (diesel); (f): NiW-ZSM-5/MCM-41 (diesel)

    Figure  10  Percentage area of carbon numbers of liquid products after distillation identified by SimDis GC-FID using various catalysts

    a: NiMo-ZSM/MCM-41 (gasoline); b: NiW-ZSM-5/MCM-41 (gasoline); c: NiMo-ZSM-5/MCM-41 (kerosene); d: NiW-ZSM-5/MCM-41 (kerosene); e: NiMo-ZSM-5/MCM-41 (diesel); f: NiW-ZSM-5/MCM-41(diesel)

    Table  1  Textural properties and metal content of catalysts

    Table  2  NH3-TPD and activity parameters of catalysts

    Table  3  Catalytic performance for the hydrocracking of CPO over different catalysts on simple distillation (n=3)

  • [1] BOTAS J A, SERRANO D P, GARCIA A, VICENTE J, RAMOS R. Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni-and Mo-modified nanocrystalline ZSM-5 zeolite[J]. Catal Today, 2012, 195(1):59-70. doi: 10.1016/j.cattod.2012.04.061
    [2] HANSHENG L, SHICHAO H, KE M, QIN W, QINGZE J, KENING S. Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether:Effect of SiO2/Al2O3 ratio in H-ZSM-5[J]. Appl Catal A:Gen, 2013, 450(1):152-159. http://www.sciencedirect.com/science/article/pii/S0926860X1200662X
    [3] BOTAS J A, SERRANO D P, GARCIA A, RAMOS R. Catalytic conversion of rapeseed oil for the production of raw chemicals, fuels and carbon nanotubes over Ni-modified nanocrystalline and hierarchical ZSM-5[J]. Appl Catal B:Environ, 2014, 145(1):205-215. http://www.sciencedirect.com/science/article/pii/S0926337312005917
    [4] HAN D, SUN N, LIU J, LI C, SHAN H, YANG C. Synergistic effect of W and P on ZSM-5 and its catalytic performance in the cracking of heavy oil[J]. J Energy Chem, 2014, 23(4):519-526. doi: 10.1016/S2095-4956(14)60180-7
    [5] WANG X, GAO X, DONG M, ZHAO H, HUANG W. Production of gasoline range hydrocarbons from methanol on hierarchical ZSM-5 and Zn/ZSM-5 catalyst prepared with soft second template[J]. J Energy Chem, 2015, 24(4):490-496. doi: 10.1016/j.jechem.2015.06.009
    [6] WU G, WU W, WANG X, ZAN W, WANG W, LI C. Nanosized ZSM-5 zeolites:Seed-induced synthesis and the relation between the physicochemical properties and the catalytic performance in the alkylation of naphthalene[J]. Microporous Mesoporous Mater, 2013, 180(1):187-195. http://www.sciencedirect.com/science/article/pii/S1387181112006609
    [7] JINDAN N, CUOZHU L, TIANYOU Z, GUOCHANG D, SHENLIN H, LI W. Synthesis and catalytic performance of ZSM-5/MCM-41 zeolites with varying mesopore size by surfactant-directed recrystallization[J]. Catal Lett, 2013, 143(3):267-275. doi: 10.1007/s10562-013-0963-0
    [8] QI J, ZHAO T, LI F, SUN G, XU X, MIAO C, WANG H, ZHANG X. Study of cracking of large molecules over a new type meso-ZSM-5 composite zeolite[J]. J Porous Mater, 2010, 17(2):177-184. doi: 10.1007/s10934-009-9278-3
    [9] TAUFIQURRAHMI N, MOHAMED A R, BHATIA S. Deactivation and coke combustion studies of nanocrystalline zeolite beta in catalytic cracking of used palm oil[J]. Chem Eng J, 2010, 163(3):413-421. doi: 10.1016/j.cej.2010.07.049
    [10] DAO K Y, MEI L F, YA H Y, YI B S, JIA Y C, YI W F. One-step synthesis of hierarchical-structured ZSM-5 zeolite[J]. J Fuel Chem Technol, 2016, 44(11):1363-1369. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18933.shtml
    [11] NIKOORAZM M, CHOGHAMARANI A G, NOORI N. Preparation and characterization of functionalized Cu (Ⅱ) schiff base complex on mesoporous MCM-41 and its application as effective catalyst for the oxidation of sulfides and oxidative coupling of thiols[J]. J Porous Mater, 2015, 22(4):877-885. doi: 10.1007/s10934-015-9961-5
    [12] OOI Y S, ZAKARIA R, MOHAMED A R, BHATIA S. Synthesis of composite material MCM-41/beta and its catalytic performance in waste used palm oil cracking[J]. Appl Catal A:Gen, 2004, 274(1/2):15-23. http://www.sciencedirect.com/science/article/pii/S0926860X04004454
    [13] ZHANG H, LI Y. Preparation and characterization of Beta/MCM-41composite zeolite with a stepwise-distributed pore structure[J]. Powder Technol, 2008, 183(1):73-78. doi: 10.1016/j.powtec.2007.11.013
    [14] GUO W, XIONG C, HUANG L, LI Q. Synthesis and characterization of composite molecular sieves comprising zeolite beta with MCM-41 structures[J]. J Mater Chem, 2001, 11(7):1886-1890. doi: 10.1039/b009903l
    [15] SONG C M, JIANG J, YAN Z. Synthesis and characterization of MCM-41-type composite materials prepared from ZSM-5 zeolite[J]. J Porous Mater, 2008, 15(2):205-211. doi: 10.1007/s10934-007-9121-7
    [16] AHMAD M, FARHANA R, RAMAN A A A, BHARGAVA S K. Synthesis and activity evaluation of heterometallic nano oxides integrated ZSM-5 catalysts for palm oil cracking to produce biogasoline[J]. Energy Convers Manage, 2016, 119(1):352-360. http://www.sciencedirect.com/science/article/pii/S0196890416303193
    [17] SANG Y, LIU H, HE S, LI H, JIAO Q, WU Q, SUN K. Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether[J]. J Energy Chem, 2013, 22(5):769-777. doi: 10.1016/S2095-4956(13)60102-3
    [18] CHANG N, GU Z, WANG Z, LIU Z, HOU X, WANG J. Study of Y zeolite catalysts for coal tar hydro-cracking in supercritical gasoline[J]. J Porous Mater, 2011, 18(5):589-596. doi: 10.1007/s10934-010-9413-1
    [19] AKMAZ S, CAGLAYAN P A. Effect of catalyst, temperature, and hydrogen pressure on slurry hydrocracking reactions of naphthalene[J]. Chem Eng Technol, 2015, 38(5):917-930. doi: 10.1002/ceat.v38.5
    [20] GUTIERREZ A, ARANDES J M, CASTANO P, OLAZAR M, BARONA A, BILBAO J. Effect of temperature in hydrocracking of light cycle oil on a noble metal-supported catalyst for fuel production[J]. Chem Eng Technol, 2012, 35(4):653-660. doi: 10.1002/ceat.201100382
    [21] BENDEZU S, CID R, FIERRO J L G, LOPEZ AGUDO A. Thiophene hydrodesulfurization on sulfided Ni, W and NiW/USY zeolite catalysts:Effect of the preparation method[J]. Appl Catal A:Gen, 2000, 197(1):47-60. doi: 10.1016/S0926-860X(99)00532-3
    [22] ZHAO Y, LIN X, LI D. Catalytic hydrocracking of a bitumen -derived asphaltene over NiMo/-Al2O3 at various temperatures[J]. Chem Eng Technol, 2015, 38(1):297-303.
    [23] ISHIHARA A, ITOH T, NASU H, HASHIMOTO T, DOIT. Hydrocracking of 1-methylnaphthalene/decahydronaphthalene mixture catalyzed by zeolite-alumina composite supported NiMo catalysts[J]. Fuel Process Technol, 2013, 116(1):222-227. http://www.sciencedirect.com/science/article/pii/S0378382013002324
    [24] KUBICKA D, KALUZA L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts[J]. Appl Catal A:Gen, 2010, 372(2):199-208. doi: 10.1016/j.apcata.2009.10.034
    [25] ISHIHARA A, FUKUI N, NASU H, HASHIMOTO T. Hydrocracking of soybean oil using zeolite-alumina composite supported NiMo catalysts[J]. Fuel, 2014, 134(1):611-617. http://www.sciencedirect.com/science/article/pii/S0016236114005602
    [26] CHEN H, WANG Q, ZHANG X, WANG L. Effect of support on the NiMo phase and its catalytic hydrodeoxygenation of triglycerides[J]. Fuel, 2015, 159(1):430-435. http://www.sciencedirect.com/science/article/pii/S0016236115007012
    [27] SUBSADSANA M, SANGDARA P, RUANGVIRIYACHAI C. Effect of bimetallic NiW modified crystalline ZSM-5 zeolite on catalytic conversion of crude palm oil and identification of biofuel products[J]. Asia-Pac J Chem Eng, 2017, 12(1):147-158. doi: 10.1002/apj.v12.1
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  26
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-23
  • 修回日期:  2017-05-02
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-07-10

目录

    /

    返回文章
    返回