留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr掺杂Cu2O的光催化性质的第一性原理研究

吕巧雅 李龙龙 李亚方 毛金花 陈婷 赵燕杰 刘立强 李鲁艳

吕巧雅, 李龙龙, 李亚方, 毛金花, 陈婷, 赵燕杰, 刘立强, 李鲁艳. Cr掺杂Cu2O的光催化性质的第一性原理研究[J]. 燃料化学学报(中英文), 2019, 47(1): 98-103.
引用本文: 吕巧雅, 李龙龙, 李亚方, 毛金花, 陈婷, 赵燕杰, 刘立强, 李鲁艳. Cr掺杂Cu2O的光催化性质的第一性原理研究[J]. 燃料化学学报(中英文), 2019, 47(1): 98-103.
LÜ Qiao-ya, LI Long-long, LI Ya-fang, MAO Jin-hua, CHEN Ting, ZHAO Yan-jie, LIU Li-qiang, LI Lu-yan. First-principles study on the photocatalytic properties of Cr-doped Cu2O[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 98-103.
Citation: LÜ Qiao-ya, LI Long-long, LI Ya-fang, MAO Jin-hua, CHEN Ting, ZHAO Yan-jie, LIU Li-qiang, LI Lu-yan. First-principles study on the photocatalytic properties of Cr-doped Cu2O[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 98-103.

Cr掺杂Cu2O的光催化性质的第一性原理研究

基金项目: 

国家自然科学基金 21603122

山东省自然科学基金博士基金 ZR2016FB03

山东建筑大学博士科研基金项目 XNBS1266

山东建筑大学博士科研基金项目 XNBS1535

山东建筑大学博士科研基金项目 XNBS1538

详细信息
    通讯作者:

    LI Lu-yan, Tel:13853110283, E-mail:liluyan@sdjzu.edu.cn

  • 中图分类号: O643

First-principles study on the photocatalytic properties of Cr-doped Cu2O

Funds: 

the National Natural Science Foundation of China 21603122

Natural Science Foundation of Shandong Province of China ZR2016FB03

Doctoral Foundation of Shandong Jianzhu University XNBS1266

Doctoral Foundation of Shandong Jianzhu University XNBS1535

Doctoral Foundation of Shandong Jianzhu University XNBS1538

  • 摘要: 采用第一性原理计算的方法,研究了不同浓度及不同位置Cr掺杂Cu2O体系的缺陷形成能、电子结构和可见光区域的光催化性质及产生机理。结果表明,本征Cu2O显示半导体特性,在可见光区域吸收很弱;不同浓度、不同位置的Cr掺杂体系均是稳定的,显示金属特性。与本征Cu2O相比,随着Cr掺杂浓度的增大,体系在可见光范围内的吸收峰均有不同程度的增强,并且两个Cr原子近邻掺杂时可见光区域的吸收系数最大,光催化效率最强。态密度分析发现,Cr掺杂体系在可见光范围的吸收主要由Cr 3d态电子的带内跃迁产生;不同掺杂浓度和结构构型主要影响材料在长波长段的物理性质,而对短波长段的性质影响很小。因此,通过增大Cr掺杂浓度及调控掺杂位置可以提高Cu2O在可见光区域的光催化效率,推动Cu2O在光催化方面的发展。
  • 图  1  常见半导体光催化剂的带边位置以及带隙宽度[14-17]

    Figure  1  Band position and band-gap width of common semiconductor photocatalysts

    图  2  Cu2O、Cu2O-1Cr、Cu2O-2Cr-near和Cu2O-2Cr-far的1☞2☞2超晶胞结构,红色球为O原子,蓝色球为Cu原子,黄色球为Cr原子

    Figure  2  Super cell structure of (a) Cu2O, (b) Cu2O-1Cr, (c) Cu2O-2Cr-near and (d) Cu2O-2Cr-far 1☞2☞2; the red, blue, and yellow balls represent O, Cu, and Cr atoms, respectively

    图  3  本征Cu2O的能带图、总态密度图和分波态密度图

    Figure  3  (a) Band diagram of intrinsic Cu2O, (b) total density of states, ((c)-(e))partial density of states

    图  4  Cu2O-1Cr的总态密度图和分波态密度图

    Figure  4  (a) Total density of states; ((b)-(d)) partial density of states of Cu2O-1Cr

    图  5  Cu2O-2Cr-far的总态密度图和分波态密度图

    Figure  5  Total density of states(a); partial density of states ((b)-(d)) of Cu2O-2Cr-far

    图  6  Cu2O-2Cr-near的总态密度图和分波态密度图

    Figure  6  Total density of states(a); partial density of states ((b)-(d)) of Cu2O-2Cr-near

    图  7  四种结构的介电函数虚部图

    Figure  7  Imaginary part of the dielectric function of the four structures

    图  8  四种体系的吸收光谱图,蓝色区域表示可见光能量范围

    Figure  8  Absorption spectra of four structures; the blue area indicates the visible light energy range

  • [1] SU J, LIN Z, CHEN G. Ultrasmall graphitic carbon nitride quantum dots decorated self-organized TiO2 nanotube arrays with highly efficient photoelectrochemical activity[J]. Appl Catal B:Environ, 2016, 186:127-135. doi: 10.1016/j.apcatb.2015.12.050
    [2] LI C, CHEN G, SUN J, RAO J, HAN Z, HU Y, XING W, ZHANG C. Doping effect of phosphate in Bi2WO6, and universal improved photocatalytic activity for removing various pollutants in water[J]. Appl Catal B:Environ, 2016, 188:39-47. doi: 10.1016/j.apcatb.2016.01.054
    [3] LOU S, JIA X, WANG Y, ZHOU S. Template-assisted in-situ synthesis of porous AgBr/Ag composite microspheres as highly efficient visible-light photocatalyst[J]. Appl Catal B:Environ, 2015, 176:586-593. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d12157bc3f3af00a4e530523da1c7d52
    [4] HE Y R, YAN F F, YU H Q, YUAN S J, TONG Z H, SHENG G P. Hydrogen production in a light-driven photoelectrochemical cell[J]. Appl Energy, 2014, 113(1):164-168. http://www.sciencedirect.com/science/article/pii/S0306261913005862
    [5] OSTERLOH F E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting[J]. Chem Soc Rev, 2013, 42(6):2294-2320. doi: 10.1039/C2CS35266D
    [6] 高鑫, 刘祥萱, 王煊军, 朱左明.改性Cu2O光催化剂的研究进展[J].材料工程, 2016, 44(1):120-128. http://d.old.wanfangdata.com.cn/Periodical/clgc201601019

    GAO Xin, LIU Xiang-xuan, WANG Xuan-jun, ZHU Zuo-ming. Progress in research on modified Cu2O photocatalyst[J]. J Mater Eng, 2016, 44(1):120-128. http://d.old.wanfangdata.com.cn/Periodical/clgc201601019
    [7] JIANG D, XUE J, WU L, ZHOU W, ZHANG Y, LI X. Photocatalytic performance enhancement of CuO/Cu2O heterostructures for photodegradation of organic dyes:Effects of CuO morphology[J]. Appl Catal B:Environ, 2017, 211:199-204. doi: 10.1016/j.apcatb.2017.04.034
    [8] PANG H, GAO F, LU Q. Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities[J]. CrystEngCommun, 2010, 12(2):406-412. doi: 10.1039/B904705K
    [9] DAS K, SHARMA S N, KUMAR M, DE S K. Luminescence properties of the solvothermally synthesized blue light emitting Mn doped Cu2O nanoparticles[J]. J Appl Phys, 2010, 107(2):433-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bdc3e1535ece6fa6f1f4d2e3564b5f1
    [10] LU Y M, CHEN C Y, MING H L. Effect of hydrogen plasma treatment on the electrical properties of sputtered N-doped cuprous oxide films[J]. Thin Solid Films, 2005, 480(1-3):482-485. http://www.sciencedirect.com/science/article/pii/S0921510704006683
    [11] 唐爱东, 胡莉琴, 王朵. Cu2O的室温液相法合成及光催化性能[J].功能材料, 2011, 42(11):2034-2037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201103346672

    TANG Ai-dong, HU Li-qin, WANG Duo. Photo-catalytic property of Cu2O prepared by roomtemperature liquid phase redox method[J]. J Funct Mater, 2011, 42(11):2034-2037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201103346672
    [12] LI L, CHENG Y, WANG W, REN S, YANG Y, LUO X, LIU H. Effects of copper and oxygen vacancies on the ferromagnetism of Mn-and Co-doped Cu2O[J]. Solid State Commun, 2011, 151(21):1583-1587. doi: 10.1016/j.ssc.2011.07.025
    [13] ZHENG Z, HUANG B, WANG Z, GUO M, QIN X, ZHANG X, WANG P, DAI Y. Crystal faces of Cu2O and their stabilities in photocatalytic reaction[J]. J Phys Chem C, 2009, 113(32):462-470. doi: 10.1021/jp904198d
    [14] LEAH ISSEROFF B, CARTER E A. First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces[J]. J Phys Chem B, 2013, 117(49):15750-60. doi: 10.1021/jp406454c
    [15] GAI Y, LI J, LI S S, XIA J B, WEI S H. Design of narrow-gap TiO2:A passivated codoping approach for enhanced photoelectrochemical activity[J]. Phys Rev Lett, 2009, 102(3):036402. doi: 10.1103/PhysRevLett.102.036402
    [16] BALACHANDRAN S, SWAMINATHAN M. Facile fabrication of heterostructured Bi2O3-ZnO photocatalyst and its enhanced photocatalytic activity[J]. J Phys Chem C, 2013, 116(50):26306-26312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9ff2de0c174afe29dec1a87fa0cc5498
    [17] WANG Z, HUANG B, DAI Y, QIN X, ZANG X, WANG P, LIU H, YU J. Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method[J]. J Phys Chem C, 2009, 113(11):4612-4617. doi: 10.1021/jp8107683
    [18] VAIANO V, MATARANGOLO M, SACCO O, SANNINO D. Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts[J]. Appl Catal B:Environ, 2017, 209:621-630. doi: 10.1016/j.apcatb.2017.03.015
    [19] JIANG Z Q, YAO G, AN X Y, FU Y J, GAO L H, WU W D, WANG X M. Electronic and optical properties of Au-doped Cu2O:A first principles investigation[J]. Chin Phys B, 2014, 23(5):470-477. http://www.cqvip.com/QK/85823A/201405/49435130.html
    [20] ZHANG L, JING D, GUO L, YAO X. In situ photochemical synthesis of Zn-doped Cu2O hollow microcubes for high efficient photocatalytic H2 production[J]. Acs Sustainable Chem Eng, 2014, 2(6):1446-1452. doi: 10.1021/sc500045e
    [21] 彭健, 任荣康, 李健宁, 张明举, 牛猛, 马蕾, 闫小兵, 郑树凯. Cl掺杂Cu2O的第一性原理计算[J].微纳电子技术, 2017, (3):157-161. http://www.cqvip.com/QK/83066A/201704/672852863.html

    PENG Jian, REN Rong-kang, LI Jian-ning, ZHANG Ming-ju, NIU Meng, MA Lei, YAN Xiao-bing, ZHENG Shu-kai. First principles calculation of Cl doped Cu2O[J]. Micronanoelectronic Technol, 2017, (3):157-161. http://www.cqvip.com/QK/83066A/201704/672852863.html
    [22] SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J Phys Condens Matter, 2002, 14(11):2717-2744. doi: 10.1088/0953-8984/14/11/301
    [23] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B:Condens Matter, 1990, 41(11):7892-7895. doi: 10.1103/PhysRevB.41.7892
    [24] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [25] ZHAO R, HASKELL W B, TAN V Y F. Stochastic L-BFGS:Improved convergence rates and practical acceleration strategies[J]. IEEE Trans Signal Process, 2018, 66(5):1155-1169. doi: 10.1109/TSP.2017.2784360
    [26] KATAYAMA J, ITO K, MATSUOKA M, TAMAKI J. Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition[J]. J Appl Electrochem, 2004, 34(7):687-692. doi: 10.1023/B:JACH.0000031166.73660.c1
    [27] 濮春英, 李洪婧, 唐鑫, 张庆瑜. N掺杂Cu2O薄膜的光学性质及第一性原理分析[J].物理学报, 2012, 61(4):380-385. doi: 10.3969/j.issn.1672-7940.2012.04.002

    PU Chun-ying, LI Hong-jing, TANG Xin, ZHANG Qing-yu. Opyical properties of N-doped Cu2O films and relevant analysis with first-principles calculations (in Chinese)[J]. Acta Phys Sin, 2012, 61(4):380-385. doi: 10.3969/j.issn.1672-7940.2012.04.002
    [28] 陈婷, 庞军, 何红, 彭赟, 吴楠, 徐建, 杜成旭, 庞星星, 毋志民, 崔玉亭. Mn掺杂LiMgP新型稀磁半导体的光电性质[J].科学通报, 2017, 62(35):4169-4178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172018010300039726

    CHEN Ting, PANG Jun, HE Hong, PENG Yun, WU Nan, XU Jian, DU Cheng-xu, PANG Xing-xing, WU Zhi-min, CUI Yu-ting. Photoelectric properties of Mn-doped LiMgP new diluted magnetic semiconductor (in Chinese)[J]. Chin Sci Bull, 2017, 62(35):4169-4178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172018010300039726
    [29] ALEJANDRO M R, MORENO M G, TAKEUCHI N. First principles calculations of the electronic properties of bulk Cu2O, clean and doped with Ag, Ni, and Zn[J]. Solid State Sci, 2003, 5(2):291-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=37735b0ef8ee499379e4b148921ecc2b
    [30] XIA S, LIU L, KONG Y, DIAO Y. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer[J]. Chem Phys Lett, 2016, 663:90-96. doi: 10.1016/j.cplett.2016.09.074
    [31] SAHA S, SINHA T P, MOOKERJEE A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3 [J]. Phys Rev B, 2000, 62(13):699-702. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4201a705a9fd66c80f9fcdbcae931588
    [32] LI L, WANG W, LIU H, LIU X, SONG Q, REN S. First principles calculations of electronic band structure and optical properties of Cr-doped ZnO[J]. J Phys Chem C, 2009, 113(19):8460-8464. doi: 10.1021/jp811507r
  • 加载中
图(9)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  26
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-16
  • 修回日期:  2018-11-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-01-10

目录

    /

    返回文章
    返回