留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of platinum-silver alloy nanoparticles and their catalytic performance in methanol electro-oxidation

ZHAO Hai-dong LU Zhen LIU Rui LI Zuo-peng GUO Yong

赵海东, 卢珍, 刘锐, 李作鹏, 郭永. 铂银合金的制备及其对甲醇电氧化反应的催化性能[J]. 燃料化学学报(中英文), 2020, 48(8): 1015-1024.
引用本文: 赵海东, 卢珍, 刘锐, 李作鹏, 郭永. 铂银合金的制备及其对甲醇电氧化反应的催化性能[J]. 燃料化学学报(中英文), 2020, 48(8): 1015-1024.
ZHAO Hai-dong, LU Zhen, LIU Rui, LI Zuo-peng, GUO Yong. Preparation of platinum-silver alloy nanoparticles and their catalytic performance in methanol electro-oxidation[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 1015-1024.
Citation: ZHAO Hai-dong, LU Zhen, LIU Rui, LI Zuo-peng, GUO Yong. Preparation of platinum-silver alloy nanoparticles and their catalytic performance in methanol electro-oxidation[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 1015-1024.

铂银合金的制备及其对甲醇电氧化反应的催化性能

基金项目: 

the Natural Science Foundation of Shanxi Province of China 201801D121073

the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province 2019L0749

Datong Key Research Project of Science and Technology Planning Social Development 2017119

the Applied Basic Research Youth Science and Technology Foundation of Shanxi Province of China 201901D211433

the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province 2019L0737

2019 Open Research Fund of Shanxi Province Research Center for Innovative Application of New Mesoporous Materials MMIA2019106

PhD Research Startup Foundation of Shanxi Datong University 2013-B-16

the Natural Science Foundation of Shanxi 201701D121016

Natural Science Foundation of Datong 201819

详细信息
  • 中图分类号: O614.8

Preparation of platinum-silver alloy nanoparticles and their catalytic performance in methanol electro-oxidation

Funds: 

the Natural Science Foundation of Shanxi Province of China 201801D121073

the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province 2019L0749

Datong Key Research Project of Science and Technology Planning Social Development 2017119

the Applied Basic Research Youth Science and Technology Foundation of Shanxi Province of China 201901D211433

the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province 2019L0737

2019 Open Research Fund of Shanxi Province Research Center for Innovative Application of New Mesoporous Materials MMIA2019106

PhD Research Startup Foundation of Shanxi Datong University 2013-B-16

the Natural Science Foundation of Shanxi 201701D121016

Natural Science Foundation of Datong 201819

More Information
  • 摘要: 采用一种无需使用任何有机表面活性剂或溶剂的方法,在熔融盐体系中制备了铂银纳米合金颗粒,考察了合金中元素银对碱性电解质中甲醇电氧化反应(MOR)的催化作用。透射电子显微镜表征结果显示,当前躯体铂银物质的量比为1时,可以得到组成为Pt52Ag48的合金纳米管。甲醇电氧化反应测试结果表明,具有干净表面的Pt52Ag48纳米管比常规的Pt黑具有更好的催化性能。Pt52Ag48合金纳米管的催化活性与其最大正扫电位密切相关,正扫电位从-1.0到0.5 V(vs.SCE),MOR峰值电流达到1.61 mA/μgPt,是从-1.0到0.1 V(vs.SCE)正扫电位的1.92倍。铂银合金表面层中的Ag元素主要通过在电化学循环中发生氧化还原反应来促进合金的MOR活性。研究结果可以为铂银合金在直接甲醇燃料电池(DMFC)中的应用提供理论支持。
  • Figure  1  SEM and TEM images of ((a), (f)) Pt86Ag14, ((b), (g)) Pt79Ag21, ((c), (h)) Pt52Ag48, ((d), (i)) Pt21Ag79, and ((e), (j)) Pt11Ag89

    Figure  2  Particle size distribution histogram for Pt86Ag14 (a) and nanotube diameter distribution histogram for Pt52Ag48 (b), estimated from the SEM images

    Figure  3  TEM images ((a), (b)) of the Pt52Ag48; HRTEM images ((c), (d)) of the local sites of Pt52Ag48 labelled in (b)

    Figure  4  XRD patterns of the Pt, Pt86Ag14, Pt79Ag21, Pt52Ag48, Pt21Ag79, Pt11Ag89, and Ag

    Figure  5  Cyclic voltammograms of Pt11Ag89, Pt21Ag79, Pt52Ag48, Pt79Ag21 and Pt86Ag14 NPs performed in the electrolyte of N2-saturated 0.5 moL/L KOH. the inset is the enlarge image of CV between -1.0 and -0.7 V

    Figure  6  Cyclic voltammograms of Pt52Ag48 in N2-saturated 0.5 moL/L KOH electrolyte

    Figure  7  Cyclic voltammograms of Pt black and Pt52Ag48 performed with different positive potential limits (-1.0 to 0.5 V and -1.0 to 0.1 V) in the electrolyte of N2-saturated 0.5 mol/L KOH

    Figure  8  Cyclic voltammograms (a) and linear polarization curves (b) for MOR on the Pt black (JM), Pt11Ag89, Pt21Ag79, Pt52Ag48, Pt79Ag21 and Pt86Ag14 catalysts in the electrolyte of 0.5 moL/L KOH + 2 moL/L CH3OH, the insets in (a) and (b) show the corresponding activities at -0.25 V and the dependence between the onset potential of MOR and the catalysts composition, respectively (the scan rate is 20 mV/s)

    Figure  9  Cyclic voltammograms of (a) Pt black and (b) Pt52Ag48 in the electrolyte of 0.5 moL/L KOH + 2 moL/L CH3OH with different potential limits at a scan rate of 20 mV/s

    black solid line: -1.0 to 0.5 V; red dotted line: -1.0 to 0.1 V

    Figure  10  Sequential cyclic voltammograms of Pt52Ag48 in the electrolyte of 0.5 moL/L KOH + 2 moL/L CH3OH with the potential ranges of (a) -1.0 to 0.5 V and (b) -1.0 to 0.1 V (scan rate 20 mV/s)

    Table  1  PtxAgy atomic molar ratios in the alloy NPs prepared with different Pt(NH3)4C2O4/CH3COOAg ratios in the molten salt precursor, analyzed by EDX

    PtxAgy sample Pt(NH3)4C2O4/CH3COOAg Pt/Ag, by EDX
    Pt86Ag14 8:1 6.09
    Pt79Ag21 4:1 3.89:1
    Pt52Ag48 1:1 1.10:1
    Pt21Ag79 1:4 1:3.88
    Pt11Ag89 1:8 1:8.51
    下载: 导出CSV

    Table  2  MOR performance of Pt black, Pt11Ag89, Pt21Ag79, Pt52Ag48, Pt79Ag21 and Pt86Ag14 catalysts in 0.5 moL/L KOH + 2 moL/L CH3OH

    Sample E0 /V Ep /V If /(mA·μgPt-1) Ib /(mA·μgPt-1) If/Ib I@-0.25V /(mA·μgPt-1)
    Pt black -0.77 -0.07 1.43 0.56 2.55 0.86
    Pt11Ag89 -0.51 -0.28 0.02 - - 0.02
    Pt21Ag79 -0.71 -0.25 0.34 0.03 11.33 0.33
    Pt52Ag48 -0.91 -0.20 1.61 0.19 8.47 1.02
    Pt79Ag21 -0.82 -0.21 0.43 0.06 7.17 0.39
    Pt86Ag14 -0.66 -0.24 0.25 0.02 12.50 0.26
    下载: 导出CSV
  • [1] SAXENA N, PRANEETH N, RAO K, PARIA S. Organization of palladium nanoparticles into fractal patterns for highly enhanced catalytic activity and anode material for direct borohydride fuel cells applications[J]. ACS Appl Energy Mater, 2018, 1(5):2164-2175. doi: 10.1021/acsaem.8b00211
    [2] SHARAF O Z, ORHAN M F, An overview of fuel cell technology:Fundamentals and applications[J]. Renewable Sustainable Energ Rev, 2014, 32, 810-853. doi: 10.1016/j.rser.2014.01.012
    [3] STAMENKOVIC V R, FOWLER B, MUN B S, WANG G, ROSS P N, LUCAS C A, MARKOVIĆ N M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability[J]. Science, 2007, 5811:493-497. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b77f1ddc321c7747e19a50cc90d6b82
    [4] GASTEIGER H A, MARKOVIĆ N M, Just a dream-or future reality?[J]. Science, 2009, 324(5923):48-49. doi: 10.1126/science.1172083
    [5] GASTEIGER H A, KOCHA S S, SOMPALLI B, WAGNER F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl Catal B:Environ, 2005, 56(1):9-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=089f3d5590acf0c14f937063006e430e
    [6] YANG H, DAI L, XU D, FANG J, ZOU S. Electrooxidation of methanol and formic acid on PtCu nanoparticles[J]. Electrochim Acta, 2010, 55(27):8000-8004. doi: 10.1016/j.electacta.2010.03.026
    [7] CHEN J, LIM B, LEE E P, XIA Y. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications[J]. Nano Today, 2009, 4(1):81-95. doi: 10.1016/j.nantod.2008.09.002
    [8] TIAN N, ZHOU Z Y, SUN S G, DING Y, WANG Z L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825):732-735. doi: 10.1126/science.1140484
    [9] HUANG X, ZHAO Z, FAN J, TAN Y, ZHENG N. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets[J]. J Am Chem Soc, 2011, 133(13):4718-4721. doi: 10.1021/ja1117528
    [10] TIAN N, ZHOU Z Y, SUN S G. Platinum metal catalysts of high-index surfaces:From single-crystal planes to electrochemically shape-controlled nanoparticles[J]. J Phys Chem C, 2008, 112(50):19801-19817. doi: 10.1021/jp804051e
    [11] LIM B, JIANG M, CAMARGO P H C, CHO E C, TAO J, LU X, ZHU Y, XIA Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932):1302-1305. doi: 10.1126/science.1170377
    [12] XU D, LIU Z, YANG H, LIU Q, ZHANG J, FANG J, ZOU S, SUN K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes[J]. Angew Chem Int Ed, 2009, 48(23):4217-4221. doi: 10.1002/anie.200900293
    [13] HONG F, SUN S, YOU H, YANG S, FANG J, GUO S, YANG Z, DING B, SONG X. Cu2O template strategy for the synthesis of structure-definable noble metal alloy mesocages[J]. Cryst Growth Des, 2011, 11(9):3694-3697. doi: 10.1021/cg2001893
    [14] XU H, SONG P, WANG J, DU Y. Shape-controlled synthesis of platinum-copper nanocrystals for efficient liquid fuel electrocatalysis[J]. Langmuir, 2018, 34(27):7981-7988. doi: 10.1021/acs.langmuir.8b01729
    [15] ZHAO H, YU C, YOU H, YANG S, GUO Y, DING B, SONG X. A green chemical approach for preparation of PtxCuy nanoparticles with a concave surface in molten salt for methanol and formic acid oxidation reactions[J]. J Mater Chem, 2012, 22(11):4780-4789. doi: 10.1039/c2jm15792f
    [16] ZHANG J, FANG J. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes[J]. J Am Chem Soc, 2009, 131(51):18543-18547. doi: 10.1021/ja908245r
    [17] WANG X X, HWANG S, PAN Y T, CHEN K, HE Y, KARAKALOS S, ZHANG H, SPENDELOW J S, SU D, WU G. Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction[J]. Nano Lett, 2018, 18(7):4163-4171. doi: 10.1021/acs.nanolett.8b00978
    [18] ZHANG L, FISCHER J, JIA Y, YAN X, XU W, WANG X, CHEN J, YANG D, LIU H, ZHUANG L, HANKEL M, SEARLES D J, HUANG K, FENG S, BROWN C L, YAO X. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction[J]. J Am Chem Soc, 2018, 140(34):10757-10763. doi: 10.1021/jacs.8b04647
    [19] YANG D, YAN Z, LI B, HIGGINS D C, WANG J, LV H, CHEN Z, ZHANG C. Highly active and durable Pt-Co nanowire networks catalyst for the oxygen reduction reaction in PEMFCs[J]. Int J Hydrog Energy, 2016, 41(41):18592-18601. doi: 10.1016/j.ijhydene.2016.08.159
    [20] DING J, BU L, GUO S, ZHAO Z, ZHU E, HUANG Y, HUANG X. Morphology and phase controlled construction of Pt-Ni nanostructures for efficient electrocatalysis[J]. Nano Lett, 2016, 16(4):2762-2767. doi: 10.1021/acs.nanolett.6b00471
    [21] MATIN M A, JANG J H, KWON Y U. PdM nanoparticles (M=Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions[J]. J Power Sources, 2014, 262:356-363. doi: 10.1016/j.jpowsour.2014.03.109
    [22] YANG S, PENG Z, YANG H. Platinum lead nanostructures:Formation, phase behavior, and electrocatalytic properties[J]. Adv Funct Mater, 2008, 18(18):2745-2753. doi: 10.1002/adfm.200800266
    [23] ZHAO H, LIU R, GUO Y, YANG S. Molten salt medium synthesis of wormlike platinum silver nanotubes without any organic surfactant or solvent for methanol and formic acid oxidation[J]. Phys Chem Chem Phys, 2015, 17(46):31170-31176. doi: 10.1039/C5CP05641A
    [24] CAO X, WANG N, HAN Y, GAO C, XU Y, LI M, SHAO Y. PtAg bimetallic nanowires:Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells[J]. Nano Energy, 2015, 12:105-114. doi: 10.1016/j.nanoen.2014.12.020
    [25] WISNIEWSKA J, YANG C, ZIOLEK M. Changes in bimetallic silver-platinum catalysts during activation and oxidation of methanol and propene[J]. Catal Today, 2019, 333:89-96. doi: 10.1016/j.cattod.2018.03.001
    [26] LV J J, LI S S, ZHENG J N, WANG A J, CHEN J R, FENG J J. Facile synthesis of reduced graphene oxide supported PtAg nanoflowers and their enhanced electrocatalytic activity[J]. Int J Hydrog Energy, 2014, 39(7):3211-3218. doi: 10.1016/j.ijhydene.2013.12.112
    [27] LI J, RONG H, TONG X, WANG P, CHEN T, WANG Z. Platinum-silver alloyed octahedral nanocrystals as electrocatalyst for methanol oxidation reaction[J]. J Colloid Interface Sci, 2018, 513:251-257. doi: 10.1016/j.jcis.2017.11.039
    [28] LIU Q, HE Y M, WENG X, WANG A J, YUAN P X, FANG K M, FENG J J. One-pot aqueous fabrication of reduced graphene oxide supported porous PtAg alloy nanoflowers to greatly boost catalytic performances for oxygen reduction and hydrogen evolution[J]. J Colloid Interface Sci, 2018, 513:455-463. doi: 10.1016/j.jcis.2017.11.026
    [29] STAMENKOVIC V R, MUN B S, ARENZ M, MAYRHOFER K J J, LUCAS C A, WANG G, ROSS P N, MARKOVIC N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nat Mater, 2007, 6:241. doi: 10.1038/nmat1840
    [30] LIN R, CHE L, SHEN D, CAI X. High durability of Pt-Ni-Ir/C ternary catalyst of PEMFC by stepwise reduction synthesis[J]. Electrochim Acta, 2020, 330:135251. doi: 10.1016/j.electacta.2019.135251
    [31] LIN R, CAI X, HAO Z, PU H, YAN H. Rapid microwave-assisted solvothermal synthesis of shape-controlled Pt-Ni alloy nanoparticles for PEMFC[J]. Electrochim Acta, 2018, 283:764-771. doi: 10.1016/j.electacta.2018.03.190
    [32] JIANG Q, JIANG L, HOU H, QI J, WANG S, SUN G. Promoting effect of Ni in PtNi bimetallic electrocatalysts for the methanol oxidation reaction in alkaline media:Experimental and density functional theory studies[J]. J Phys Chem C, 2010, 114(46):19714-19722. doi: 10.1021/jp1039755
    [33] WU F, ZHANG Z, ZHANG F, DUAN D, LI Y, WEI G, LIU S, YUAN Q, WANG E, HAO X. Exploring the role of cobalt in promoting the electroactivity of amorphous Ni-B nanoparticles toward methanol oxidation[J]. Electrochim Acta, 2018, 287:115-123. doi: 10.1016/j.electacta.2018.07.106
    [34] PRABHURAM J, MANOHARAN R. Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid[J]. J Power Sources, 1998, 74(1):54-61. doi: 10.1016/S0378-7753(98)00012-3
    [35] BLIZANAC B B, ROSS P N, MARKOVIC N M. Oxygen electroreduction on Ag(111):The pH effect[J]. Electrochim Acta, 2007, 52(6):2264-2271. doi: 10.1016/j.electacta.2006.06.047
    [36] FENG L, GAO G, HUANG P, WANG X, ZHANG C, ZHANG J, GUO S, CUI D. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation[J]. Nanoscale Res Lett, 2011, 6:551. doi: 10.1186/1556-276X-6-551
    [37] HE W, WU X, LIU J, ZHANG K, CHU W, FENG L, HU X, ZHOU W, XIE S. Formation of AgPt alloy nanoislands via chemical etching with tunable optical and catalytic properties[J]. Langmuir, 2010, 26:4443-4448. doi: 10.1021/la9034968
    [38] FENG Y Y, BI L X, LIU Z H, KONG D S, YU Z Y. Significantly enhanced electrocatalytic activity for methanol electro-oxidation on Ag oxide-promoted PtAg/C catalysts in alkaline electrolyte[J]. J Catal, 2012, 290:18-25. doi: 10.1016/j.jcat.2012.02.013
    [39] FENG Y Y, LIU Z H, KONG W Q, YIN Q Y, DU L X. Promotion of palladium catalysis by silver for ethanol electro-oxidation in alkaline electrolyte[J]. Int J Hydrog Energy, 2014, 39(6):2497-2504. doi: 10.1016/j.ijhydene.2013.12.004
    [40] XU J B, ZHAO T S, LIANG Z X. Synthesis of active platinum-silver alloy electrocatalyst toward the formic acid oxidation reaction[J]. J Phys Chem C, 2008, 112(44):17362-17367. doi: 10.1021/jp8063933
    [41] WU J, ZHANG J, PENG Z, YANG S, WAGNER F T, YANG H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts[J]. J Am Chem Soc, 2010, 132(14):4984-4985. doi: 10.1021/ja100571h
    [42] CHEN X, WU G, CHEN J, CHEN X, XIE Z, WANG X. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide[J]. J Am Chem Soc, 2011, 133(11):3693-3695. doi: 10.1021/ja110313d
    [43] MERGA G, SAUCEDO N, CASS L C, PUTHUSSERY J, MEISEL D. "Naked" gold nanoparticles:Synthesis, characterization, catalytic hydrogen evolution, and SERS[J]. J Phys Chem C, 2010, 114(35):14811-14818. doi: 10.1021/jp104922a
    [44] CASWELL K K, BENDER C M, MURPHY C J. Seedless, surfactantless wet chemical synthesis of silver nanowires[J]. Nano Lett, 2003, 3(5):667-669. doi: 10.1021/nl0341178
    [45] SUN S H, YANG D Q, VILLERS D, ZHANG G X, SACHER E, DODELET J P. Template-and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires[J]. Adv Mater, 2008, 20(3):571-574. doi: 10.1002/adma.200701408
    [46] HUANG C, JIANG J, LU M, SUN L, MELETIS E I, HAO Y. Capturing electrochemically evolved nanobubbles by electroless deposition. A facile route to the synthesis of hollow nanoparticles[J]. Nano Lett, 2009, 9(12):4297-4301. doi: 10.1021/nl902529y
    [47] ZHAO H, WU J, YOU H, YANG S, DING B, YANG Z, SONG X, YANG H. In situ chemical vapor reaction in molten salts for preparation of platinum nanosheets via bubble breakage[J]. J Mater Chem, 2012, 22(24):12046-12052. doi: 10.1039/c2jm31422c
    [48] ZHAO H, YANG S, YOU H, WU Y, DING B. Synthesis of surfactant-free Pt concave nanoparticles in a freshly-made or recycled molten salt[J]. Green Chem, 2012, 14(11):3197-3203. doi: 10.1039/c2gc35995b
    [49] PENG Z, YANG H. Ag-Pt alloy nanoparticles with the compositions in the miscibility gap[J]. J Solid State Chem, 2008, 181(7):1546-1551. doi: 10.1016/j.jssc.2008.03.013
    [50] POUND B G, MACDONALD D D, TOMLINSON J W. The electrochemistry of silver in KOH at elevated temperatures-II. Cyclic voltammetry and galvanostatic charging studies[J]. Electrochim Acta, 1980, 25(5):563-573. doi: 10.1016/0013-4686(80)87058-7
    [51] LIMA F, SANCHES C D, TICIANELLI E A. Physical characterization and electrochemical activity of bimetallic platinum-silver particles for oxygen reduction in alkaline electrolyte[J]. J Electrochem Soc, 2005, 152(7):1466-1473. doi: 10.1149/1.1933514
    [52] XU C W, WANG H, SHEN P K, JIANG S P. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells[J]. Adv Mater, 2007, 19(23):4256-4259. doi: 10.1002/adma.200602911
    [53] FENG Y Y, ZHANG G R, MA J H, LIU G, XU B Q. Carbon-supported Pt/Ag nanostructures as cathode catalysts for oxygen reduction reaction[J]. Phys Chem Chem Phys, 2011, 13(9):3863-3872. doi: 10.1039/c0cp01612h
    [54] CHATENET M, GENIES B L, AUROUSSEAU M, DURAND R, ANDOLFATTO F. Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide-comparison with platinum[J]. J Appl Electrochem, 2002, 32(10):1131-1140. doi: 10.1023/A:1021231503922
    [55] NAGLE L C, AHERN A J, BURKE D L. Some unusual features of the electrochemistry of silver in aqueous base[J]. J Solid State Electr, 2002, 6(5):320-330. doi: 10.1007/s100080100233
    [56] JOVIC B M, JOVIC V D, STAFFORD G R. Cyclic voltammetry on Ag(111) and Ag(100) faces in sodium hydroxide solutions[J]. Electrochem Commun, 1999, 1(6):247-251. doi: 10.1016/S1388-2481(99)00049-1
    [57] OROZCO G, PÉREZ M C, RINCÓ N A, GUTIÉRREZ C. Electrooxidation of methanol on silver in alkaline medium[J]. J Electroanal Chem, 2000, 495(1):71-78. http://www.sciencedirect.com/science/article/pii/S002207280000396X
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  69
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-14
  • 修回日期:  2020-07-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回