留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu-ZnO-CeO2催化剂组成对CO2加H2合成甲醇性能的影响

霍海辉 高文桂 毛文硕 纳薇 闫晓峰 叶海船

霍海辉, 高文桂, 毛文硕, 纳薇, 闫晓峰, 叶海船. Cu-ZnO-CeO2催化剂组成对CO2加H2合成甲醇性能的影响[J]. 燃料化学学报(中英文), 2019, 47(5): 523-531.
引用本文: 霍海辉, 高文桂, 毛文硕, 纳薇, 闫晓峰, 叶海船. Cu-ZnO-CeO2催化剂组成对CO2加H2合成甲醇性能的影响[J]. 燃料化学学报(中英文), 2019, 47(5): 523-531.
HUO Hai-hui, GAO Wen-gui, MAO Wen-shuo, NA Wei, YAN Xiao-feng, YE Hai-chuan. Effect of composition of Cu-ZnO-CeO2 catalyst on its performance for methanol synthesis from CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 523-531.
Citation: HUO Hai-hui, GAO Wen-gui, MAO Wen-shuo, NA Wei, YAN Xiao-feng, YE Hai-chuan. Effect of composition of Cu-ZnO-CeO2 catalyst on its performance for methanol synthesis from CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 523-531.

Cu-ZnO-CeO2催化剂组成对CO2加H2合成甲醇性能的影响

基金项目: 

国家自然科学基金 51304099

国家科技支撑计划课题 2011BAC01B03

详细信息
  • 中图分类号: O643.3

Effect of composition of Cu-ZnO-CeO2 catalyst on its performance for methanol synthesis from CO2 hydrogenation

Funds: 

the National Natural Science Foundation of China 51304099

the National Key Technologies R & D Program of China 2011BAC01B03

More Information
  • 摘要: 采用并流沉淀法分别制备了CuO-CeO2(物质的量比为5:1)、CuO-ZnO(物质的量比为5:4)、CuO-ZnO-CeO2(物质的量比为5:4:1)三组目标催化剂,通过X射线衍射(XRD)、氢气升温还原(H2-TPR)、CO2程序升温脱附(CO2-TPD)、氮气吸附-脱附、X射线光电子能谱(XPS)、N2O滴定表征技术对催化剂的物化性能进行了测试,并在高温高压微催化反应器中对催化剂进行活性评价。研究了CuO-ZnO-CeO2组成对CO2加氢合成甲醇的影响。结果表明,与二组分催化剂相比较,三组分CuO-ZnO-CeO2催化剂物化性能及催化活性发生了很大变化,催化剂表面碱性位增强,热稳定性增强,CuO颗粒粒径变小,铜分散度以及氧空位浓度提高,最终催化活性显著提高。其中,CuO-ZnO-CeO2催化剂中,CuO颗粒粒径为8.2nm,铜的比表面积为68.4m2/g,铜分散度为7.19%,甲醇的选择性和收率分别为48.6%和0.057mmol/(g·min),催化剂活性较好。
  • 图  1  催化剂母体的XRD谱图

    Figure  1  XRD patterns of the catalysts

    图  2  催化剂的XRD谱图

    Figure  2  XRD patterns of the catalysts

    图  3  催化剂母体氮气吸附-脱附曲线

    Figure  3  Nitrogen adsorption desorption curves of the catalysts

    图  4  催化剂的XPS谱图

    Figure  4  XPS spectra of catalyst

    图  5  通氢还原处理后催化剂的XPS谱图

    Figure  5  XPS spectra of the catalysts with hydrogen reduction treatment

    (a): wide-scan XPS spectrum of CZC; XPS spectra of (b): Cu 2p, (c): Cu Auger electronics, (d): Zn 2p, (e): O 1s and (f): Ce 3d

    图  6  催化剂的H2-TPR谱图

    Figure  6  H2-TPR patterns of the catalysts

    图  7  催化剂的CO2-TPD谱图

    Figure  7  CO2-TPD profiles of the catalysts

    图  8  CZC催化剂上CO2加H2合成甲醇的催化稳定性

    Figure  8  Catalytic stability for CO2 hydrogenation to methanol over CZC

    表  1  催化剂组成及结构参数

    Table  1  Composition and structural parameters of the catalysts

    Catalyst Composition of elemental w/% ABET
    /(m2·g-1)
    ACu
    /(m2·g-1)
    dCuO
    /nm
    DCu
    /%
    v
    /(mL·g-1)
    Cu Zn Ce
    CC 83.3(53.4) - 16.7(46.6) 39.7 2.14 13.2 3.15 0.62
    CZ 55.6(29.2) 44.4(70.8) - 44.2 2.96 10.4 3.87 0.75
    CZC 50.0(42.8) 40.0(38.8) 10.0(18.4) 68.4 6.70 8.2 7.19 0.78
    note: outer part of the bracket is composed of the body element and the parentheses are the surface element composition determined by XPS
    下载: 导出CSV

    表  2  催化剂XPS数据

    Table  2  Catalyst XPS data

    Catalyst Concentration percentage/%
    O/O Ce3+/Ce
    CC 1.00 11.08
    CZ 6.96 -
    CZC 8.24 36.06
    下载: 导出CSV

    表  3  催化剂的活性评价

    Table  3  Evaluation data of the catalysts

    Catalyst xCO2/% sCH3OH/% YCH3OH/
    (mmol·g-1·min-1)
    CC 13.9 23.8 0.012
    CZ 18.0 34.7 0.039
    CZC 26.5 48.6 0.057
    reaction conditions: t=250 ℃, p=3 MPa, H2/CO2=3:1(volume ratio) and SV= 3000 mL/(g·h)
    下载: 导出CSV
  • [1] 唐宏青.煤化工工艺技术评述与展望Ⅰ.煤气化技术[J].燃料化学学报, 2001, 29(1):4-8. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb200104001

    TANG Hong-qing. Review and prospect of coal chemical process technology I. Coal gasification technology[J]. J Fuel Chem Technol, 2001, 29(1):4-8. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb200104001
    [2] GENG W H, HAN H, LIU F, LIU X R, XIAO L F, WU W. N, P, S-codoped C@nano-Mo2C as an efficient catalyst for high selective synthesis of methanol from CO2 hydrogenation[J]. J CO2 Util, 2017, 21:64-71. doi: 10.1016/j.jcou.2017.06.016
    [3] CARRADO K A, KIM J H, SONG C S, CASTAGNOLA N, MARSHALL C L, SCHWARTZ M M. HDS and deep HDS activity of CoMoS-mesostructured clay catalysts[J]. Catal Today, 2006, 116(4):478-484. http://www.sciencedirect.com/science/article/pii/S0920586106004135
    [4] RAMACHANDRIYA K D, KUNDIYANA D K, WILKINS M R, TERRILL J B, ATIYEH H K, HUHNKE R L. Carbon dioxide conversion to fuels and chemicals using a hybrid green process[J]. Appl Energy, 2013, 112(4):289-299. http://www.sciencedirect.com/science/article/pii/S0306261913005242
    [5] BAIKER A. Utilization of carbon dioxide in heterogeneous catalytic synthesis[J]. Appl Organomet Chem, 2000, 14(12):751-762. doi: 10.1002/1099-0739%28200012%2914%3A12%3C751%3A%3AAID-AOC85%3E3.0.CO%3B2-J
    [6] LI L, ZHANG Y, ZHENG Q, ZHENG Y H, CHEN C Q, SHE Y S, LIN X Y, WEI K M. Water-gas shift reaction over CuO/CeO2, catalysts:Effect of the thermal stability and oxygen vacancies of CeO2, supports previously prepared by different methods[J]. Catal Lett, 2009, 130(3/4):532-540.
    [7] TURSUNOV O, KUSTOV L, TILYABAEV Z. Methanol synthesis from the catalytic hydrogenation of CO2, over CuO-ZnO supported on aluminum and silicon oxides[J]. J Taiwan Inst Chem E, 2017, 78:416-422.
    [8] LAETITIA A, KILIAN K, LEIDY M, MARTINEZ T, YVAN Z, KSENIA P, ANNE C Iconography:Study of CuZnMOx oxides (M=Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol[J]. Biopolymers, 1972, 11(10):2141-2145. http://d.old.wanfangdata.com.cn/Periodical/ccsfxyxb-z200704039
    [9] HAYWARD J S, SMITH P J, KONDRAT S A, BOWKER M, HUTCHINGS G J. The effects of secondary oxides on copper-based catalysts for green methanol synthesis[J]. ChemCatChem, 2017, 9(9):1655-1662. doi: 10.1002/cctc.201601692
    [10] WITOON T, CHALORNGTHAM J, DOMRONGBUNDITKUL P, CHAREONPANICH M, LIMTRAKUL J. CO2, hydrogenation to methanol over Cu/ZrO2, catalysts:Effects of zirconia phases[J]. Chem Eng J, 2016, 293:327-336. http://www.sciencedirect.com/science/article/pii/S138589471630170X
    [11] ZHANG H, LI F, GAO P, ZHAO N, XIAO F K, WEI W, ZHONG L S, SUN Y H. Methanol synthesis from CO2, hydrogenation over La-M-Cu-Zn-O (M=Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors[J]. J Power Sources, 2014, 251(251):113-121. https://www.sciencedirect.com/science/article/abs/pii/S0378775313018648
    [12] BAN H, LI C, ASAMI K, FUJIMOTO K. Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2[J]. Catal Commun, 2014, 54:50-54. https://www.sciencedirect.com/science/article/pii/S1566736714001952
    [13] WITOON T, NUMPILAI T, PHONGAMWONG T, DONPHAI W, BOONYUEN CWARAKULWIT C, CHAREONPANICH M, LIMTRAKUL J. Enhancedactivity, selectivity and stability of a CuO-ZnO-ZrO2, catalyst by adding graphene oxide for CO2, hydrogenation to methanol[J]. Chem Eng J, 2018, 334:1781-1791. https://www.sciencedirect.com/science/article/pii/S1385894717320399
    [14] DEERATTRAKUL V, DITTANET P, SAWANGPHRUK M, KONGKACHUICHAY P. CO2, hydrogenation to methanol using Cu-Zn catalyst supportedon reduced graphene oxide nanosheets[J]. J CO2 Util, 2016, 16:104-113. https://www.sciencedirect.com/science/article/pii/S221298201630155X
    [15] 程鹏泽, 高文桂, 纳薇, 王禹皓, 李艳艳, 徐毛毛.不同沉淀剂对CO2加氢合成甲醇Cu-ZnO-ZrO2催化剂性能的影响[J].化工进展, 2017, 36(8):2955-2961. http://d.old.wanfangdata.com.cn/Periodical/hgjz201708029

    CHENG Peng-ze, GAO Wen-gui, NA Wei, WANG Yu-hao, LI Yan-yan, XU Mao-mao. Effect of different precipitants on the performance of Cu-ZnO-ZrO2 catalyst for hydrogenation of CO2 to methanol[J]. Chem Ind Eng Prog, 2017, 36(8):2955-2961. http://d.old.wanfangdata.com.cn/Periodical/hgjz201708029
    [16] PHONGAMWONG T, CHANTAPRASERTPORN U, WITOON T, NUMPILAI T CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts:Effects of SiO2contents[J]. Chem Eng J, 2017, 316:692-703.
    [17] 陈俊军, 高文桂, 王华, 纳薇. CaO对Cu-ZnO-ZrO2催化CO2加H2合成甲醇性能影响[J].燃料化学学报, 2016, 44(4):437-448. doi: 10.3969/j.issn.0253-2409.2016.04.008

    CHEN Jun-jun, GAO Wen-gui, WANG Hua, NA Wei. Effect of CaO on the Performance of Cu-ZnO-ZrO2 Catalyst for CO2 and H2 Synthesis of Methanol[J]. J Fuel Chem Technol, 2016, 44(4):437-448. doi: 10.3969/j.issn.0253-2409.2016.04.008
    [18] DUMRONGBUNDITKUL P, WITOON T, CHAREONPANICH M, THUMRONGRUT M. Preparation and characterization of Co-Cu-ZrO2 nanomaterials and their catalytic activity in CO2 methanation[J]. Ceram Int, 2016, 42(8):10444-10451. doi: 10.1016/j.ceramint.2016.03.193
    [19] LI Y Y, NA W, WANG H, GAO W G. Hydrogenation of CO2, to methanol over Au-CuO/SBA-15 catalysts[J]. J Porous Mater, 2016, 24(3):1-9. https://www.onacademic.com/detail/journal_1000039648292010_fe10.html
    [20] PEREZHERNANDEZ R, GUTIERREZMARTINEZ A, PALACIOS J, VEGAHERNANDEZ M, RODRIGUEZLUGO V. Hydrogen production by oxidativesteam reforming of methanol over Ni/CeO-ZrO catalysts[J]. Int J of Hydrogen Energy, 2011, 36(11):6601-6608. https://www.sciencedirect.com/science/article/pii/S0360319911004186
    [21] ATAKAN A, MÄKIE P, SÖDERLIND F, KERAUDY J, BJORK E M, ODEN M. Synthesis of a Cu-infiltrated Zr-doped SBA-15 catalyst for CO2 hydrogenation into methanol and dimethyl ether.[J]. Phys Chem Chem Phys, 2017, 19(29):19139-19149. doi: 10.1039/C7CP03037A
    [22] WANG Y H, GAO W G, WANG H, ZHENG Y E, LI K Z, MA R G. Morphology and activity relationships of macroporous CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. Rare Metals, 2016, 35(10):790-796. http://d.old.wanfangdata.com.cn/Periodical/xyjs-e201610009
    [23] WANG F, WEI M, EVANS D G, DUAN X. CeO2-based heterogeneous catalysts toward catalytic conversion of CO2[J]. J Mater Chem A, 2016, 4:5773-5783. doi: 10.1039/C5TA10737G
    [24] ZHOU G L, DAI B C, XIE H M, ZHANG G Z, XIONG K, ZHENG X X. Ce-Cu composite catalyst for CO synthesis by reverse water-gas shift reaction:Effect of Ce/Cu mole ratio[J]. J CO2 Util, 2017, 21:292-301. https://www.sciencedirect.com/science/article/pii/S2212982017302111
    [25] DAI B, ZHOU G, GE S, XIE H, JIAO Z, ZHANG G, XIONG K. CO2 reverse water-gas shift reaction on mesoporous M-CeO2 catalysts[J]. Can J Chem Eng, 2017, 95(4). doi: 10.1002/cjce.22730
    [26] HONG L, HOU Z, XIE J. Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine[J]. Fuel, 2016, 164:191-198. https://www.sciencedirect.com/science/article/pii/S0016236115009795
    [27] GAO P, LI F, XIAO F K, ZGAO N, WEI W, ZHONG L S, SUN Y H. Effect of hydrotalcite-containing precursors on the performance of Cu/Zn/Al/Zr catalysts for CO2 hydrogenation:Introduction of Cu2+ at different formation stages of precursors[J]. Catal Today, 2012, 194(1):9-15. https://www.sciencedirect.com/science/article/pii/S0920586112004543
    [28] DAI W L, SUN Q, DENG J F. XPS studies of Cu/ZnO/Al2O3, ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2 +H2[J]. Appl Surf Sci, 2001, 177(3):172-179. https://www.sciencedirect.com/science/article/pii/S016943320100229X
    [29] LI C H, LI K Z, WANG H, ZHU X, WEI Y G, YAN D X, CHENG X M, ZHAI K. Soot combustion over Ce1-xFexO2-δ and CeO2/Fe2O3 catalysts:Roles of solid solution and interfacial interactions in the mixed oxides[J]. Appl Surf Sci, 2016, 390:513-525. doi: 10.1016/j.apsusc.2016.08.122
    [30] ZENG L P, LI K Z, WANG H, YU H, ZHU X, WEI Y GNING P H, SHI C Z, LUO Y M. CO oxidation on Au/α-Fe2O3-hollow catalysts:General synthesis and structural dependence[J]. J Phys Chem C, 2017, 121(23). https://www.researchgate.net/publication/317129926_CO_Oxidation_on_Aua-Fe2O3-Hollow_Catalysts_General_Synthesis_and_Structural_Dependence
    [31] LI D Y, LI K Z, XU R D, WANG H, TIAN D, WEI Y G, ZHU X, ZENG C H, ZENG L P. Ce1-xFexO2-δ catalysts for catalytic methane combustion:Role of oxygen vacancy and structural dependence[J]. Catal Today, 2018, 318:73-85.
    [32] GAO P, YANG H, ZHANG L. Fluorinated Cu/Zn/Al/Zr hydrotalcites derived nanocatalysts for CO2, hydrogenation to methanol[J]. J CO2 Util, 2016, 16:32-41. doi: 10.1016/j.jcou.2016.06.001
    [33] LEI H, NIE R F, WU G Q, HOU Z Y. Hydrogenation of CO2, to CH3OH over Cu/ZnO catalysts with different ZnO morphology[J]. Fuel, 2015, 154:161-166. doi: 10.1016/j.fuel.2015.03.052
    [34] LIU Y X, SUN K P, MA H W, XU X L, XIAO L. Cr, Zr-incorporated hydrotalcites and their application in the synthesis of isophorone[J]. Catal Commun, 2010, 11(10):880-883. https://www.sciencedirect.com/science/article/pii/S1566736710000919
    [35] WU G D, WANG X L, WEI W, SUN Y H. Fluorine-modified Mg-Al mixed oxides:A solid base with variable basic sites and tunable basicity[J]. Appl Catal A:Gen, 2010, 377(1):107-113.
    [36] GUO X M, MAO D S, LU G Z, WANG S, WU G S. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation[J]. J Mol Catal A:Chem, 2011, 345(1):60-68. https://www.researchgate.net/publication/251672048_The_influence_of_La_doping_on_the_catalytic_behavior_of_CuZrO_2_for_methanol_synthesis_from_CO_2_hydrogenation
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  43
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-11
  • 修回日期:  2019-02-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-05-10

目录

    /

    返回文章
    返回