留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuO/ZrO2催化水煤气变换反应制氢:ZrO2载体焙烧温度的影响

张燕杰 陈崇启 詹瑛瑛 叶远松 娄本勇 郑国才 林棋

张燕杰, 陈崇启, 詹瑛瑛, 叶远松, 娄本勇, 郑国才, 林棋. CuO/ZrO2催化水煤气变换反应制氢:ZrO2载体焙烧温度的影响[J]. 燃料化学学报(中英文), 2019, 47(4): 464-473.
引用本文: 张燕杰, 陈崇启, 詹瑛瑛, 叶远松, 娄本勇, 郑国才, 林棋. CuO/ZrO2催化水煤气变换反应制氢:ZrO2载体焙烧温度的影响[J]. 燃料化学学报(中英文), 2019, 47(4): 464-473.
ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, YE Yuan-song, LOU Ben-yong, ZHENG Guo-cai, LIN Qi. CuO/ZrO2 catalysts for the production of H2 through the water-gas shift reaction: Effect of calcination temperature of ZrO2[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 464-473.
Citation: ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, YE Yuan-song, LOU Ben-yong, ZHENG Guo-cai, LIN Qi. CuO/ZrO2 catalysts for the production of H2 through the water-gas shift reaction: Effect of calcination temperature of ZrO2[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 464-473.

CuO/ZrO2催化水煤气变换反应制氢:ZrO2载体焙烧温度的影响

基金项目: 

国家自然科学基金 21503105

福建省自然科学基金 2017J05025

福建省自然科学基金 2017J01584

福建省高校杰出青年科研人才培育计划 2016

福建省教育厅JK类项目 JK2015038

闽江学院科研启动经费 MJY17003

详细信息
  • 中图分类号: O643

CuO/ZrO2 catalysts for the production of H2 through the water-gas shift reaction: Effect of calcination temperature of ZrO2

Funds: 

the National Natural Science Foundation of China 21503105

Natural Science Foundation of Fujian Province 2017J05025

Natural Science Foundation of Fujian Province 2017J01584

Project for Outstanding Young Talents of Fujian Provincial Universities 2016

JK Project of the Education Department of Fujian Province JK2015038

Scientific Research Foundation from Minjiang University MJY17003

More Information
  • 摘要: 以经不同温度(120、250、350、450 ℃)焙烧处理的ZrO2为载体,采用沉积-沉淀法制备了系列CuO/ZrO2催化剂;考察了富氢气氛下催化剂的水煤气变换反应(WGS)催化性能。结果表明,CuO/ZrO2催化剂的催化活性随ZrO2载体焙烧温度的升高呈现先升高后降低的"火山型"变化趋势,在焙烧温度为250 ℃时取得最高值。采用X射线粉末衍射、N2物理吸附-脱附、N2O滴定、H2程序升温还原和CO程序升温还原及质谱跟踪等技术研究了系列ZrO2载体及CuO/ZrO2催化剂的结构和还原性能。结果表明,随着ZrO2焙烧温度的升高,一方面,CuO/ZrO2催化剂的Cu分散度逐渐降低,与ZrO2具有强相互作用的高分散活性Cu-[O]-Zr物种("[]"表示ZrO2表面氧空位)逐渐减少;另一方面,Cu-[O]-Zr物种的还原能力逐渐增强,并诱导催化剂活性表面羟基的还原能力也相应增强(CO为还原剂),即降低了催化剂对WGS反应的起活温度。两方面的综合作用使得ZrO2载体焙烧温度为250 ℃(中等温度)时,CuO/ZrO2催化剂的WGS催化活性最高。
  • 图  1  经不同温度焙烧的ZrO2载体(a)及相应CuO/ZrO2催化剂(b)的XRD谱图

    Figure  1  XRD patterns of ZrO2 calcined at different temperatures (a) and corresponding CuO/ZrO2 catalysts (b)

    图  2  ZrO2焙烧温度与ZrO2载体晶粒粒径及催化剂Cu分散度间的关系

    Figure  2  Dependence of the crystalline size of ZrO2 and Cu dispersion of the CuO/ZrO2 catalyst on the calcination temperature of the ZrO2 support

    图  3  经不同温度焙烧的ZrO2及相应CuO/ZrO2催化剂的N2物理吸附-脱附曲线((a)、(c))和孔径分布((b)、(d))

    Figure  3  N2 adsorption-desorption isotherms ((a), (c)) and pore size distribution ((b), (d)) of the ZrO2 supports calcined at different temperatures and corresponding CuO/ZrO2 catalysts

    图  4  不同温度焙烧的ZrO2为载体的CuO/ZrO2催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of the CuO/ZrO2 catalysts prepared with the ZrO2 supports calcined at different temperatures

    图  5  不同温度焙烧的ZrO2的H2O-TPD质谱谱图

    Figure  5  H2O-TPD-MS profiles of the ZrO2 supports calcined at different temperatures

    test conditions: carrier gas, He; m/z = 18; ZrO2 is not subjected to any pretreatments

    图  6  不同温度焙烧的ZrO2为载体的CuO/ZrO2催化剂的CO-TPR-MS谱图

    Figure  6  CO-TPR-MS profiles of the CuO/ZrO2

    catalysts prepared with the ZrO2 supports calcined at different temperatures (CO2, m/z = 44; H2, m/z = 2)

    图  7  不同温度焙烧的ZrO2为载体的CuO/ZrO2催化剂的WGS活性

    Figure  7  WGS catalytic activity of the CuO/ZrO2 catalysts prepared with the ZrO2 supports calcined at different temperatures

    reaction conditions: feed gas, 15%CO/55% H2/23% N2/7% CO2; space velocity, 4000 cm3/(g·h); molar ratio of steam to gas 0.4:1

    表  1  经不同温度焙烧的ZrO2载体及相应CuO/ZrO2催化剂的结构性质

    Table  1  Structural properties of the ZrO2 support calcined at different temperatures and corresponding CuO/ZrO2 catalysts

    SampleCu contenta
    w/%
    dCub/%ACuc/%DZrO2d/nmABET
    /(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Z-120---5.21200.261
    Z-250---5.71240.282
    Z-350---6.41110.186
    Z-450---9.2590.147
    C/Z-1208.260.641.34.8700.264
    C/Z-2508.257.839.45.6800.270
    C/Z-3508.452.937.36.8810.297
    C/Z-4508.330.220.89.7530.254
    a: measured by ICP-OES; b: Cu dispersion calculated from N2O titration results; c: Cu metal area calculated from N2O titration results; d: crystallite size of m-ZrO2 calculated by the Scherrer equation using the diffraction at 2θ=32.8°
    下载: 导出CSV

    表  2  不同温度焙烧的ZrO2为载体的CuO/ZrO2催化剂的还原性能

    Table  2  Reducibility of the CuO/ZrO2 catalysts prepared withthe ZrO2 supports calcined at different temperatures

    SampleH2-TPR peak temperature(℃) and
    H2 consumption(μmol·g-1)a
    CO-TPR-MS peak
    temperature t/℃
    Relative concentration
    of active OHb
    peak αpeak βpeak γpeak βpeak δ
    C/Z-120153(366)170(595)187(73)2082870.84
    C/Z-250151(382)164(479)188(148)1632541.00
    C/Z-350143(278)153(290)189(455)1592330.96
    C/Z-450136(115)144(146)195(741)1572300.58
    a: values in parentheses are the H2 consumption calculated by fitting results; b: calculated from the H2 signal peak (m/z = 2) area in CO-TPR-MS profiles by assuming the relative concentration of active OH in C/Z-250 is 1.00
    下载: 导出CSV
  • [1] LEVALLEY T L, RICHARD A R, FAN M. The progress in water gas shift and steam reforming hydrogen production technologies-A review[J]. Int J Hydrogen Energy, 2014, 39(30):16983-17000. doi: 10.1016/j.ijhydene.2014.08.041
    [2] YAO S, ZHANG X, ZHOU W, GAO R, XU W, YE Y, LIN L, WEN X, LIU P, CHEN B, CRUMLIN E, GUO J, ZUO Z, LI W, XIE J, LU L, KIELY C J, GU L, SHI C, RODRIGUEZ J A, MA D. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction[J]. Science, 2017, 357(6349):389-393. doi: 10.1126/science.aah4321
    [3] STERE C E, ANDERSON J A, CHANSAI S, DELGADO J J, GOGUET A, GRAHAM W G, HARDACRE C, TAYLOR S F R, TU X, WANG Z Y, YANG H. Non-thermal plasma activation of gold-based catalysts for low-temperature water-gas shift catalysis[J]. Angew Chem Int Ed, 2017, 56(20):5579-5583. doi: 10.1002/anie.201612370
    [4] PAL D B, CHAND R, UPADHYAY S N, MISHRA P K. Performance of water gas shift reaction catalysts:A review[J]. Renewable Sustainable Energy Rev, 2018, 93:549-565. doi: 10.1016/j.rser.2018.05.003
    [5] ABDEL-MAGEED A M, KUCEROVA G, BANSMANN J, BEHM R J. Active Au species during the low-temperature water gas shift reaction on Au/CeO2:A time-resolved operando XAS and DRIFTS study[J]. ACS Catal, 2017, 7(10):6471-6484. doi: 10.1021/acscatal.7b01563
    [6] PALMA V, PISANO D, MARTINO M. Structured noble metal-based catalysts for the WGS process intensification[J]. Int J Hydrogen Energy, 2018, 43(26):11745-11754. doi: 10.1016/j.ijhydene.2018.01.085
    [7] AMMAL S C, HEYDEN A. Water-gas shift activity of atomically dispersed cationic platinum versus metallic platinum clusters on titania supports[J]. ACS Catal, 2017, 7(1):301-309. doi: 10.1021/acscatal.6b02764
    [8] GUAN H L, LIN J, QIAO B T, MIAO S, WANG A Q, WANG X D, ZHANG T. Enhanced performance of Rh1/TiO2 catalyst without methanation in water-gas shift reaction[J]. AIChE J, 2017, 63(6):2081-2088. doi: 10.1002/aic.v63.6
    [9] MA Y J, LIU B, JING M M, ZHANG R Y, CHEN J Y, ZHANG Y H, LI J L. Promoted potassium salts based Ru/AC catalysts for water gas shift reaction[J]. Chem Eng J, 2016, 287:155-161. doi: 10.1016/j.cej.2015.10.119
    [10] LIN J, WANG A Q, QIAO B T, LIU X Y, YANG X F, WANG X D, LIANG J X, LI J X, LIU J Y, ZHANG T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction[J]. J Am Chem Soc, 2013, 135(41):15314-15317. doi: 10.1021/ja408574m
    [11] XU M, YAO S, RAO D, NIU Y, LIU N, PENG M, ZHAI P, MAN Y, ZHENG L, WANG B, ZHANG B, MA D, WEI M. Insights into interfacial synergistic catalysis over Ni@TiO2-x catalyst toward water-gas shift reaction[J]. J Am Chem Soc, 2018, 140(36):11241-11251. doi: 10.1021/jacs.8b03117
    [12] ZHANG Z, WANG S S, SONG R, CAO T, LUO L, CHEN X, GAO Y, LU J, LI W X, HUANG W. The most active Cu facet for low-temperature water gas shift reaction[J]. Nat Commun, 2017, 8:488. doi: 10.1038/s41467-017-00620-6
    [13] YAN H, QIN X T, YIN Y, TENG Y F, JIN Z, JIA C J. Promoted Cu-Fe3O4 catalysts for low-temperature water gas shift reaction:Optimization of Cu content[J]. Appl Catal B:Environ, 2018, 226:182-193. doi: 10.1016/j.apcatb.2017.12.050
    [14] CHEN C, ZHAN Y, LI D, ZHANG Y, LIN X, JIANG L, ZHENG Q. Preparation of CuO/CeO2 catalyst with enhanced catalytic performance for water-gas shift reaction in hydrogen production[J]. Energy Technol, 2018, 6(6):1096-1103. doi: 10.1002/ente.201700750
    [15] CHEN C, ZHAN Y, ZHOU J, LI D, ZHANG Y, LIN X, JIANG L, ZHENG Q. Cu/CeO2 catalyst for water-gas shift reaction:Effect of CeO2 pretreatment[J]. ChemPhysChem, 2018, 19(12):1448-1455. doi: 10.1002/cphc.v19.12
    [16] MA Y J, LIU B, OUYANG B, LI J L. Production of hydrogen from water-gas shift reaction over Ru-[BMIM]BF4/ZnO catalyst[J]. Int J Hydrogen Energy, 2017, 42(7):4146-4154. doi: 10.1016/j.ijhydene.2016.10.111
    [17] LI J, TA N, SONG W, ZHAN E, SHEN W. Au/ZrO2 catalysts for low-temperature water gas shift reaction:Influence of particle sizes[J]. Gold Bull, 2009, 42(1):48-60. doi: 10.1007/BF03214905
    [18] CERÍN M L, HERRERA B, ARAYA P, GRACIA F, TORO-LABBÉ A. Influence of the monoclinic and tetragonal zirconia phases on the water gas shift reaction. A theoretical study[J]. J Mol Model, 2013, 19(7):2885-2891. doi: 10.1007/s00894-012-1706-7
    [19] KOUVA S, HONKALA K, LEFFERTS L, KANERVO J. Review:Monoclinic zirconia, its surface sites and their interaction with carbon monoxide[J]. Catal Sci Technol, 2015, 5:3473-3490. doi: 10.1039/C5CY00330J
    [20] KAUPPIK E I, HONKALA K, KRAUSE A O I, KANERVO J M, LEFFERTS L. ZrO2 acting as a redox catalyst[J]. Top Catal, 2016, 59(8/9):823-832. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0fe5103b646f97db090f7759469cbe80
    [21] DOW W P, HUANG T J. Effects of oxygen vacancy of yttria-stabilized zirconia support on carbon monoxide oxidation over copper catalyst[J]. J Catal, 1994, 147(1):322-332. doi: 10.1006/jcat.1994.1143
    [22] KO J B, BAE C M, JUNG Y S, KIM D H. Cu-ZrO2 catalysts for water-gas-shift reaction at low temperatures[J]. Catal Lett, 2005, 105(3/4):157-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe19c33dbc1930256b29d99efdb62526
    [23] CHEN C, RUAN C, ZHAN Y, LIN X, ZHENG Q, WEI K. The significant role of oxygen vacancy in Cu/ZrO2 catalyst for enhancing water-gas-shift performance[J]. Int J Hydrogen Energy, 2014, 39(1):317-324. doi: 10.1016/j.ijhydene.2013.10.074
    [24] AGUILA G, VALENZUELA A, GUERRERO S, ARAY P. WGS activity of a novel Cu-ZrO2 catalyst prepared by a reflux method. Comparison with a conventional impregnation method[J]. Catal Commun, 2013, 39:82-85. doi: 10.1016/j.catcom.2013.05.007
    [25] TANG Q L, LIU Z P. Identification of the active Cu phase in the water-gas shift reaction over Cu/ZrO2 from first principles[J]. J Phys Chem C, 2010, 114(18):8423-8430. doi: 10.1021/jp100864j
    [26] 张燕杰, 陈崇启, 詹瑛瑛, 林棋, 娄本勇, 郑国才, 郑起. Y修饰CuO/ZrO2催化剂高效催化水煤气变换反应制氢[J].燃料化学学报, 2017, 45(9):1137-1145. doi: 10.3969/j.issn.0253-2409.2017.09.015

    ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, LIN Qi, LOU Ben-yong, ZHENG Guo-cai, ZHENG Qi. Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction[J]. J Fuel Chem Technol, 2017, 45(9):1137-1145. doi: 10.3969/j.issn.0253-2409.2017.09.015
    [27] SONG L, CAO X B, LI L. Engineering stable surface oxygen vacancies on ZrO2 by hydrogen-etching technology:An efficient support of gold catalysts for water-gas shift reaction[J]. ACS Appl Mater Interfaces, 2018, 10(37):31249-31259. doi: 10.1021/acsami.8b07007
    [28] ZHANG Y, ZHAN Y, CHEN C, CAO Y, LIN X, ZHENG Q. Highly efficient Au/ZrO2 catalysts for low-temperature water-gas shift reaction:Effect of pre-calcination temperature of ZrO2[J]. Int J Hydrogen Energy, 2012, 37(17):12292-12300. doi: 10.1016/j.ijhydene.2012.06.025
    [29] ZHANG Y, CHEN C, LIN X, LI D, CHEN X, ZHAN Y, ZHENG Q. CuO/ZrO2 catalysts for water-gas shift reaction:Nature of catalytically active copper species[J]. Int J Hydrogen Energy, 2014, 39(8):3746-3754. doi: 10.1016/j.ijhydene.2013.12.161
    [30] ZOU Z Q, MENG M, GUO L H, ZHA Y Q. Synthesis and characterization of CuO/Ce1-xTixO2 catalysts used for low-temperature CO oxidation[J]. J Hazard Mater, 2009, 163(2/3):835-842.
    [31] JACKSON S D, HARGREAVES J S J. Metal oxide catalysis (Vol.2)[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2009.
    [32] KWAK J H, HU J, MEI D, YI C, KIM D H, PEDEN C H F, ALLARD L F, SZANYI J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3[J]. Science, 2009, 325(5948):1670-1673. doi: 10.1126/science.1176745
    [33] SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUÉROL J, SIEMIENIEWSKA T. Reporting physisorption date for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985, 57(4):603-619. doi: 10.1351/pac198557040603
    [34] WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts:Effects of zirconia phases[J]. Chem Eng J, 2016, 293:327-336. doi: 10.1016/j.cej.2016.02.069
    [35] HEEMEIER M, FRANK M, LIBUDA J, WOLTER K, KUHLENBECK H, BAUMER M, FREUND H J. The influence of OH groups on the growth of rhodium on alumina:A model study[J]. Catal Lett, 2000, 68(1/2):19-24. doi: 10.1023/A:1019058714724
    [36] ZHANG X, SHI H, XU B. Vital roles of hydroxyl groups and gold oxidation states in Au/ZrO2 catalysts for 1, 3-butadiene hydrogenation[J]. J Catal, 2011, 279(1):75-87. doi: 10.1016/j.jcat.2011.01.002
    [37] ZHAI Y, PIERRE D, SI R, DENG W, FERRIN P, NILEKAR A U, PENG G, HERRON J A, BELL D C, SALTSBURG H, FLYTZANI-STEPHANOPOULOS M. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions[J]. Science, 2010, 329(5999):1633-1636. doi: 10.1126/science.1192449
    [38] SI R, RAITANO J, YI N, ZHANG L, CHAN S, FLYTZANI-STEPHANOPOULOS M. Structure sensitivity of the low-temperature water-gas shift reaction on Cu-CeO2 catalysts[J]. Catal Today, 2012, 180(1):68-80. doi: 10.1016/j.cattod.2011.09.008
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  67
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 修回日期:  2018-12-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-04-10

目录

    /

    返回文章
    返回