留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pd/MWCNTs贫燃甲烷催化燃烧性能研究

高秀慧 王胜 高典楠 刘为钢 陈志萍 汪明哲 王树东

高秀慧, 王胜, 高典楠, 刘为钢, 陈志萍, 汪明哲, 王树东. Pd/MWCNTs贫燃甲烷催化燃烧性能研究[J]. 燃料化学学报(中英文), 2016, 44(8): 928-936.
引用本文: 高秀慧, 王胜, 高典楠, 刘为钢, 陈志萍, 汪明哲, 王树东. Pd/MWCNTs贫燃甲烷催化燃烧性能研究[J]. 燃料化学学报(中英文), 2016, 44(8): 928-936.
GAO Xiu-hui, WANG Sheng, GAO Dian-nan, LIU Wei-gang, CHEN Zhi-ping, WANG Ming-zhe, WANG Shu-dong. Catalytic combustion of methane over Pd/MWCNTs under lean fuel conditions[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 928-936.
Citation: GAO Xiu-hui, WANG Sheng, GAO Dian-nan, LIU Wei-gang, CHEN Zhi-ping, WANG Ming-zhe, WANG Shu-dong. Catalytic combustion of methane over Pd/MWCNTs under lean fuel conditions[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 928-936.

Pd/MWCNTs贫燃甲烷催化燃烧性能研究

基金项目: 

国家自然科学基金 21306185,21276250

和国家重大研究开发项目资助 2016YFC0204305

详细信息
  • 中图分类号: TQ038

Catalytic combustion of methane over Pd/MWCNTs under lean fuel conditions

More Information
  • 摘要: 以MWCNTs为载体,用HNO3做氧化剂对MWCNTs进行处理,通过XPS研究了处理前后MWCNTs表面官能团的变化,并采用超声浸渍法制得Pd/MWCNTs催化剂,借助TEM,揭示了Pd粒子在催化剂表面分散度和粒径与MWCNTs表面含氧量、羟基和羰基间的关系。并考察了Pd/MWCNTs催化剂预处理方法对低浓甲烷催化燃烧活性和稳定性的影响,研究表明,Pd的价态以及Pd粒子的粒径,都与催化剂的甲烷燃烧活性直接关联。单质Pd的氧化和Pd粒径的长大是导致催化剂性能衰减的原因。通过原位FT-IR技术对反应气氛下中间物种的监测,提出了Pd/MWCNTs催化剂上的低浓度甲烷催化氧化反应机理。
  • 图  1  不同预处理方法制得的载体及催化剂的XPS谱图

    Figure  1  XPS of MWCNTs and Pd/MWCNTs

    图  2  催化剂和载体的C 1s和O 1s XPS谱图

    Figure  2  Experimental and simulated XPS of C 1s (1) and O 1s (2) of MWCNT-un (a), MWCNT-as (b) and Pd/MWCNT-A (c)

    图  3  Pd/MWCNT-un和Pd/MWCNT-D的TEM照片

    Figure  3  TEM images and Pd particle size distributions of Pd/MWCNT-un (a, b, c) and Pd/MWCNT-D (d, e, f)

    图  4  不同方法制得的Pd/MWCNTs催化剂的活性

    Figure  4  Catalytic results of Pd/MWCNTs samples for combustion of methane

    图  5  催化剂中Pd的XPS谱图

    Figure  5  Experimental and deconvoluted Pd3d XPS of Pd-MWCNT-A (a) and Pd-MWCNT-D (b)

    图  6  Pd/MWCNT-A和Pd/MWCNT-D催化剂的TEM照片

    Figure  6  TEM images of Pd/MWCNT-A (a) and Pd/MWCNT-D (b)

    图  7  10%CH4-90%Ar条件下Pd/MWCNTs催化剂上的原位红外光谱谱图

    Figure  7  In-situ FT-IR spectra of Pd/MWCNTs catalysts in 10% CH4-90% Ar atmosphere

    图  8  30%O2-70%Ar气氛下Pd/MWCNTs催化剂上的原位红外光谱谱图

    Figure  8  In-situ FT-IR spectra of Pd/MWCNTs catalysts in 30% O2-70% Ar atmosphere

    图  9  10%CH4-30%O2-60%Ar气氛下Pd/MWCNTs催化剂上的原位红外光谱谱图

    Figure  9  In-situ FT-IR spectra of Pd/MWCNTs catalysts in 10% CH4-30% O2-60%Ar atmosphere

    图  10  Pd/MWCNT-D催化剂在低浓度甲烷燃烧反应中的稳定性

    Figure  10  Methane conversion obtained over the Pd/MWCNT at different time for combustion of methane at GHSV of 40 000 h-1

    (0.4% CH4, air balance, 330 ℃)

    图  11  Pd/MWCNT-D催化剂失活后的TEM照片

    Figure  11  TEM images for the spentPd/MWCNT-D

    (a), (b), (c): bright field images; (d): selected area electron diffraction pattern

    表  1  催化剂表面C和O元素组成

    Table  1  Surface content of C and O for MWCNTs and Pd/MWCNTs samples

    SampleRelative content of C /%Relative content of O /%
    MWCNT-un0.950.05
    MWCNT-as0.930.07
    Pd/MWCNT-A0.810.19
    Pd/MWCNT-B0.930.07
    下载: 导出CSV

    表  2  催化剂及载体中官能团含量

    Table  2  Surface chemical compositions of different functional groups in the MWCNT-un, MWCNT-as and Pd/MWCNT-A

    SampleRelative content
    C=O-OHothers
    MWCNT-un0.510.360.13
    MWCNT-as0.440.460.10
    Pd/MWCNT-A0.370.470.16
    下载: 导出CSV

    表  3  样品中不同Pd物种的含量

    Table  3  Surface content of Pd species in the Pd-MWCNT-A and Pd-MWCNT-D

    SampleRelative content
    Pd0PdO (Pd2+)
    Pd/MWCNT-A0.230.77
    Pd/MWCNT-D0.760.24
    下载: 导出CSV
  • [1] LIJIMA S.Helical microtubules of graphitic carbon[J].Nature, 1991, 354:56-58. doi: 10.1038/354056a0
    [2] PAN X L, BAO X H.The effects of confinement inside carbon nanotubes on catalysis[J].Acc Chem Res, 2011, 44(8):553-562. doi: 10.1021/ar100160t
    [3] CHEN W, FAN Z L, PAN X L, BAO X H.Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst[J].J Am Chem Soc, 2008, 130(29):9414-9419. doi: 10.1021/ja8008192
    [4] WEI G F, SHANG C, LIU Z P.Confined platinum nanoparticle in carbon nanotube:Structure and oxidation[J].Phys Chem Chem Phys, 2015, 17(3):2078-2087. doi: 10.1039/C4CP04145C
    [5] WANG D, YANG G H, MA Q X, WU M B, TAN Y S, YONEYAMA Y, TSUBAKI N.Confinement effect of carbon nanotubes:Copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate[J].ACS Catal, 2012, 2(9):1958-1966. doi: 10.1021/cs300234e
    [6] ZHANG F, PAN X L, HU Y F, YU L, CHEN X Q, JIANG P, ZHANG H B, DENG S B, ZHANG J, BOLIN T B, ZHANG S, HUANG Y Y, BAO X H.Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotubes[J].Proc Natl Acad Sci U S A, 2013, 110(37):14861-14866. doi: 10.1073/pnas.1306784110
    [7] XIAO J P, PAN X L, GUO S J, REN P J, BAO X H.Toward fundamentals of confined catalysis in carbon nanotubes[J].J Am Chem Soc, 2015, 137(1):477-482. doi: 10.1021/ja511498s
    [8] DATSYUK V, KALYVA M, PAPAGELIS K, PARTHENIOS J, TASIS D, SIOKOU A, KALLITSIS I, GALIOTIS C.Chemical oxidation of multiwalled carbon nanotubes[J].Carbon, 2008, 46(6):833-840. doi: 10.1016/j.carbon.2008.02.012
    [9] LIEW K M, WONG C H, HE X Q, TAN M J.Thermal stability of single and multi-walled carbon nanotubes[J].Phys Rev B, 2005, 71(7), p:075424.
    [10] LÓ PEZ M J, CABRIA I, MARCH N H, ALONSO J A.Structural and thermal stability of narrow and short carbon nanotubes and nanostrips[J].Carbon, 2005, 43(7):1371-1377. doi: 10.1016/j.carbon.2005.01.006
    [11] LI L, WU G, XU B Q.Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids[J].Carbon, 2006, 44(14):2973-2983. doi: 10.1016/j.carbon.2006.05.027
    [12] YU R Q, CHEN L W, LIU Q P, LIN J Y, TAN K L, NG S C, CHAN H S O, XU G Q, HOR T S A.Platinum deposition on carbon nanotubes via chemical modification[J].Chem Mater, 1998, 10(3):718-722. doi: 10.1021/cm970364z
    [13] MAZOV I, KUZNETSOV V L, SIMONOVA I A, STADNICHENKO A I, ISHCHENKO A V, ROMANENKO A I, TKACHEV E N, ANIKEEVA O B.Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology[J].Appl Surf Sci, 2012, 258(17):6272-6280. doi: 10.1016/j.apsusc.2012.03.021
    [14] LIANG X L, DONG X, LIN G D, ZHANG H B.Carbon nanotube-supported Pd-ZnO catalyst for hydrogenation of CO2 to methanol[J].Appl Catal B:Environ, 2009, 88(3/4):315-322. http://www.sciencedirect.com/science/article/pii/S0926337308004189
    [15] YANG H X, SONG S Q, RAO R C, WANG X Z, YU Q, ZHANG A M.Enhanced catalytic activity of benzene hydrogenation over nickel confined in carbon nanotubes[J].J Mol Catal A:Chem, 2010, 323(1/2):33-39.
    [16] BULUSHEV D A, YURANOV I, SUVOROVA E I, BUFFAT P A, KIWI-MINSKER L.Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation[J].J Catal, 2004, 224(1):8-17. doi: 10.1016/j.jcat.2004.02.014
    [17] DU J P, SONG C, ZHAO J H, ZHU Z P.Effect of chemical treatment to hollow carbon nanoparticles (HCNP) on catalytic behaviors of the platinum catalysts[J].Appl Surf Sci, 2008, 255(5):2989-2993. doi: 10.1016/j.apsusc.2008.08.095
    [18] HOFFMANN M, KREFT S, GEORGI G, FULDA G, POHL M M, SEEBURG D, BERGER-KARIN C, KONDRATENKO E V, WOHLRAB S.Improved catalytic methane combustion of Pd/CeO2 catalysts via porous glass integration[J].Appl Catal B:Environ, 2015, 179:313-320. doi: 10.1016/j.apcatb.2015.05.028
    [19] FORSTER P, RAMASWAMY V, ARTAXO P, BERNTSEN T, BETTS R.Climate Change 2007:The physical science basis.contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[C].Cambridge, United Kingdom and New York, USA, 2007, 212.
    [20] SCHMAL M, SOUZA M M, ALEGRE V V, DA SILVA M A P, CESAR D V, PEREZ C A.Methane oxidation-effect of support, precursor and pretreatment conditions in-situ reaction XPS and DRIFT[J].Catal Today, 2006, 118(3/4):392-401.
    [21] VAN VEGTEN N, MACIEJEWSKI M, KRUMEICH F, BAIKER A.Structural properties, redox behaviour and methane combustion activity of differently supported flame-made Pdcatalysts[J].Appl Catal B:Environ, 2009, 93(1/2):38-49.
    [22] LEE Y, KIM M Y.Catalytic combustion behaviors of methane and propane over the Pd-based catalyst in the BOP for MCFC power generation systems[J].J Mech Sci Technol, 2012, 26(8):2259-2265. doi: 10.1007/s12206-012-0607-0
    [23] ZHOU R X, ZHAO B, YUE B H.Effects of CeO2-ZrO2 present in Pd/Al2O3 catalysts on the redox behavior of PdOx and their combustion activity[J].Appl Surf Sci, 2008, 254(15):4701-4707. doi: 10.1016/j.apsusc.2008.01.075
    [24] 刘莹, 王胜, 高典楠, 潘秋实, 王树栋.Pd/NiAl2O4催化剂上甲烷燃烧反应的红外光谱研究[J].催化学报, 2013, 33(9):1552-1557.

    LIU Ying, WANG Sheng, GAO Dian-nan, PAN Qiu-shi, WANG Shu-dong.In-situ FTIR study on methane combustion over Pd/NiAl2O4 catalyst[J].Chin J Catal, 2013, 33(9):1552-1557.
    [25] DEMOULIN O, NAVEZ M, RUIZ P.Investigation of the behaviour of a Pd/γ-Al2O3 catalyst during methane combustion reaction using in situ DRIFT spectroscopy[J].Appl Catal A:Gen, 2005, 295(1):59-70. doi: 10.1016/j.apcata.2005.08.008
    [26] GAO D N, ZHANG C X, WANG S, YUAN Z S, WANG S D.Catalytic activity of Pd/Al2O3 toward the combustion of methane[J].Catal Commun, 2008, 9(15):2583-2587. doi: 10.1016/j.catcom.2008.07.014
    [27] YIN F X, JI S F, WU P Y, ZHAO F Z, LI C Y.Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane[J].J Catal, 2008, 257(1):108-116. doi: 10.1016/j.jcat.2008.04.010
    [28] YANG S W, VALIENTE A M, GONZALEZ M B, RAMOS I R, RUIZ A G.Methane combustion over supported palladium catalysts I.reactivity and active phase[J].Appl Catal B:Environ, 2000, 28:223-233. doi: 10.1016/S0926-3373(00)00178-8
    [29] YUE B H, ZHOU R X, WANG Y J, ZHENG X M.Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce-Zr/Al2O3catalysts[J].Appl Catal A:Gen, 2005, 295(1):31-39. doi: 10.1016/j.apcata.2005.08.002
    [30] 邵建军, 朱锡, 张永坤, 王明贵.Co3O4/CeO2CO氧化的原位红外光谱研究[J].燃料化学学报, 2012, 40(2):229-234. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17888.shtml

    SHAO Jian-jun, ZHU Xi, ZHANG Yong-kun, WANG Ming-gui.In situ FT-IR study on CO oxidation over Co3O4/CeO2 catalyst[J].J Fuel Chem Technol, 2012, 40(2):229-234. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17888.shtml
    [31] MUÑOZ F F, BAKER R T, LEYVA A G, FUENTES R O.Reduction and catalytic behaviour of nanostructured Pd/gadolinia-doped ceria catalysts for methane combustion[J].Appl Catal B:Environ, 2013, 136-137:122-132. doi: 10.1016/j.apcatb.2013.02.008
    [32] XU T Y, ZHANG Q F, CEN J, XIANG Y Z, LI X N.Selectivity tailoring of Pd/CNTs in phenol hydrogenation by surface modification:Role of co oxygen species[J].Appl Surf Sci, 2015, 324:634-639. doi: 10.1016/j.apsusc.2014.10.165
    [33] CHEN X M, LIN Z J, JIA T T, CAI Z M, HUANG X L, JIANG Y Q, CHEN X, CHEN G N.A facile synthesis of palladium nanoparticles supported on functional carbon nanotubes and its novel catalysis for ethanol electrooxidation[J].Anal Chim Acta, 2009, 650(1):54-58. doi: 10.1016/j.aca.2009.02.035
    [34] CHEN J H, WANG M Y, LIU B, FAN Z, CUI K Z, KUANG Y F.Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation[J].J Phys Chem B, 2006, 110:11775-11779. doi: 10.1021/jp061045a
    [35] GUO Y, FHAYLI K, LI S, YANG Y, MASHAT A, KHASHAB N M.Electroless reductions on carbon nanotubes:How critical is the diameter of a nanotube[J].RSC Adv, 2013, 3(39):17693-17695. doi: 10.1039/c3ra42350f
    [36] MIKOLAJCZUK A, BORODZINSKI A, STOBINSKI L, KEDZIERZAWSKI P, LESIAK B, KOVER L, TOTH J, LIN H M.Physicochemical characterization of the Pd/MWCNTs catalysts for fuel cell applications[J].Phys Status Solidi B, 2010, 247(11/12):3063-3067.
    [37] PERSSON K, PFEFFERLE L D, SCHWARTZ W, ERSSON A, JÄRÅS S G.Stability of palladium-based catalysts during catalytic combustion of methane:The influence of water[J].Appl Catal B:Environ, 2007, 74(3/4):242-250.
    [38] CIUPARU D, PERKINS E, PFEFFERLE L.In situ DR-FTIR investigation of surface hydroxyls onγ-Al2O3 supported PdO catalysts during methane combustion[J].Appl Catal A:Gen, 2004, 263(2):145-153. doi: 10.1016/j.apcata.2003.12.006
    [39] ASHOKA S, CHITHAIAH P, CHANDRAPPA G T.Studies on the synthesis of CdCO3 nanowires and porous CdO powder[J].Mater Lett, 2010, 64(2):173-176. doi: 10.1016/j.matlet.2009.10.036
    [40] GUTIÉRREZ P R, PORTILLO M O, CHÁVEZ M, CHALTEL L, AGUSTÍN S R, RUBIO E, ZAMORA M.Synthesis of CdCO3 in situ doped Pb2+ grown by chemical bath[J].Mater Lett, 2015, 160:488-490. doi: 10.1016/j.matlet.2015.08.034
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  71
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-05
  • 修回日期:  2016-06-07
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-08-10

目录

    /

    返回文章
    返回