留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对CuMgAl催化剂催化糠醛气相加氢制糠醇性能的影响

孙蛟 任国卿 黄玉辉 陈晓蓉 梅华

孙蛟, 任国卿, 黄玉辉, 陈晓蓉, 梅华. 焙烧温度对CuMgAl催化剂催化糠醛气相加氢制糠醇性能的影响[J]. 燃料化学学报(中英文), 2017, 45(1): 43-47.
引用本文: 孙蛟, 任国卿, 黄玉辉, 陈晓蓉, 梅华. 焙烧温度对CuMgAl催化剂催化糠醛气相加氢制糠醇性能的影响[J]. 燃料化学学报(中英文), 2017, 45(1): 43-47.
SUN Jiao, REN Guo-qing, HUANG Yu-hui, CHEN Xiao-rong, MEI Hua. Effect of calcination temperature on the catalytic performance of CuMgAl catalysts for furfural gas phase selective hydrogenation to furfuryl alcohol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 43-47.
Citation: SUN Jiao, REN Guo-qing, HUANG Yu-hui, CHEN Xiao-rong, MEI Hua. Effect of calcination temperature on the catalytic performance of CuMgAl catalysts for furfural gas phase selective hydrogenation to furfuryl alcohol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 43-47.

焙烧温度对CuMgAl催化剂催化糠醛气相加氢制糠醇性能的影响

详细信息
    通讯作者:

    陈晓蓉, Tel:025-83172254, E-mail:chenxr@126.com

  • 中图分类号: O643.38

Effect of calcination temperature on the catalytic performance of CuMgAl catalysts for furfural gas phase selective hydrogenation to furfuryl alcohol

  • 摘要: 采用分步沉淀过程制得质量比m(CuO):m(MgO):m(Al2O3)为25:26:49的CuMgAl类水滑石前驱体,经过不同温度焙烧制得CuMgAl-t催化剂。通过BET、热重、XRD、H2-TPR和CO2-TPD对催化剂进行表征,在固定床中考察CuMgAl-t催化剂催化糠醛气相加氢制糠醇的性能。结果表明,焙烧温度影响催化剂活性、稳定性及对产物的选择性,低温焙烧的催化剂经还原后可获得较多活性中心,高温焙烧的催化剂表面具有更多的碱性位,CuMgAl催化剂经450℃焙烧表面存在适宜的活性中心和碱性位。在常压、反应温度180℃、氢醛物质的量比5:1、糠醛体积空速0.3 h-1的条件下,CuMgAl-450催化剂上糠醛的转化率和糠醇的选择性分别达到98.64%和97.66%。
  • 图  1  糖醛加氢示意图

    Figure  1  Hydrogenation of furfural

    图  2  CuMgAl类水滑石前驱体的TG曲线

    Figure  2  TG curve of the CuMgAl hydrotalcite-type precursor

    图  3  CuMgAl-t催化剂和CuMgAl类水滑石前驱体的XRD谱图

    Figure  3  XRD patterns of CuMgAl-t catalysts and CuMgAl hydrotalcite-type precursor

    a:CuMgAl-350;b:CuMgAl-400;c:CuMgAl-450;d:CuMgAl-500;e:CuMgAl-550;f:CuMgAl hydrotalcite-type precursor

    图  4  还原态CuMgAl-t催化剂的XRD谱图

    Figure  4  XRD patterns of reduced CuMgAl-t catalysts

    a:CuMgAl-350;b:CuMgAl-400;c:CuMgAl-450;d:CuMgAl-500;e:CuMgAl-550

    图  5  CuMgAl-t催化剂的H2-TPR谱图

    Figure  5  H2-TPR profiles of CuMgAl-t catalysts

    a:CuMgAl-350;b:CuMgAl-400;c:CuMgAl-450;d:CuMgAl-500;e:CuMgAl-550

    图  6  CuMgAl-t催化剂的CO2-TPD谱图

    Figure  6  CO2-TPD profiles of CuMgAl-t catalysts

    a:CuMgAl-350;b:CuMgAl-400;c:CuMgAl-450;d:CuMgAl-500;e:CuMgAl-550

    图  7  CuMgAl-t催化剂上糠醛加氢制糠醇的稳定性

    Figure  7  Stability test of CuMgAl-t catalysts in the hydrogenation of furfural to furfuryl alcohol

    表  1  CuMgAl-t催化剂BET分析数据及还原态催化剂Cu0粒径

    Table  1  BET analysis of CuMgAl-t catalysts and Cu0 particle size of reduced catatlysts

    Catalyst BET
    A/(m2·g-1)
    Pore volume
    v*/(cm3·g-1)
    Average pore
    diameter d/nm
    Particle size of Cu0
    d/nm
    CuMgAl-350 217 0.558 7 3.71 4.54
    CuMgAl-400 211 0.551 2 3.72 4.83
    CuMgAl-450 204 0.550 1 3.75 4.74
    CuMgAl-500 211 0.586 1 3.75 5.45
    CuMgAl-550 193 0.540 2 3.75 5.70
    *:pore volume was determined on the basic of the nitrogen adsorption at a relative pressure of 0.99
    下载: 导出CSV

    表  2  焙烧温度对CuMgAl-t催化剂催化性能的影响

    Table  2  Effect of calcination temperatures on the catalytic performance of CuMgAl-t catalysts

    Catalyst FFR
    conversion x/%
    Selectivity s/%
    2-MF FOL others
    CuMgAl-350 98.20 2.70 92.37 4.93
    CuMgAl-400 98.18 1.96 95.36 2.68
    CuMgAl-450 98.64 0.94 97.66 1.40
    CuMgAl-500 96.18 0.76 97.87 1.37
    CuMgAl-550 91.56 0.72 97.71 1.57
    2-MF: 2-methyl furan;others include tetrahydrofurfuryl alcohol,cyclopentanone and cyclopentanol
    下载: 导出CSV
  • [1] YAN K, WU G, LAFLEUR T, JARVIS C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemical[J]. Renew Sust Energy Rev, 2014, 38(5):663-676.
    [2] JEAN-PAUL L, EVERT V, JEROEN V, RICHARD P. Furfural-a promising platform for lignocellulosic biofuels[J]. Chem Sus Chem, 2012, 5(1):150-166. doi: 10.1002/cssc.201100648
    [3] MANDALIK A, LI Q, SATO T K, RUNGE T. Integrated biorefinery model based on production of furans using open-ended high yield processes[J]. Green Chem, 2014, 16(5):2480-2489. doi: 10.1039/C3GC42424C
    [4] NAKAGAWA Y, TAMURA M, TOMISHIGE K. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. ACS Catal, 2013, 3(12):2655-2668. doi: 10.1021/cs400616p
    [5] 黄玉辉, 任国卿, 孙蛟, 王重庆, 陈晓蓉, 梅华.沉淀剂对CuZnAl催化剂糠醛气相加氢制糠醇选择性的影响[J].燃料化学学报, 2016, 44(6):726-731. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18851.shtml

    HUANG Yu-hui, REN Guo-qing, SUN Jiao, WANG Chong-qing, CHEN Xiao-rong, MEI Hua. Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol[J]. J Fuel Chem Technol, 2016, 44(6):726-731. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18851.shtml
    [6] SEO G, CHON H. Chemlnform abstract:Hydrogenation of furfural over copper-containing catalysts[J]. J Catal, 1981, 67(2):424-429. doi: 10.1016/0021-9517(81)90302-X
    [7] YAN K, CHEN A. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu-Cr catalyst[J]. Energy, 2013, 58(1):357-363.
    [8] XU C, ZHENG L, LIU J, HUANG Z. Furfural hydrogenation on nickel-promoted cu-containing catalysts prepared from hydrotalcite-like precursors[J]. Chin J Chem, 2011, 29(4):691-697. doi: 10.1002/cjoc.v29.4
    [9] FORGIONNY A, FIERRO J L G, MONDRAGON F, MORENO A. Effect of Mg/Al ratio on catalytic behavior of Fischer-Tropsch cobalt-based catalysts obtained from hydrotalcites precursors[J]. Top Catal, 2016, 59(2/4):230-240.
    [10] ZHOU M, ZENG Z, ZHU H, XIAO G, XIAO R. Aqueous-phase catalytic hydrogenation of furfural to cyclopentanol over Cu-Mg-Al hydrotalcites derived catalysts:Model reaction for upgrading of bio-oil[J]. J Energy Chem, 2014, 23(1):91-96. doi: 10.1016/S2095-4956(14)60109-1
    [11] DEBECKER D P, GAIGNEAUX E M, BUSCA G. Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis[J]. Chemistry, 2009, 15(16):3920-3935. doi: 10.1002/chem.v15:16
    [12] 申延明, 吴静, 唐杨军, 张惠, 王蕾, 刘长厚, 张振祥. CuMgAl类水滑石的制备与表征[J].硅酸盐学报, 2009, 37(2):285-290. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG200509009.htm

    SHEN Yan-ming, YANG Jing, TANG Yang-jun, ZHANG Hui, WANG Lei, LIU Chang-hou, ZHANG Zhen-xiang. Preparation and characterization of CuMgAl hydrotalcite-like compounds[J]. J Chin Ceram Soc, 2009, 37(2):285-290. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG200509009.htm
    [13] MELIAN-CABRERA I, GRANADOS M L, FIERRO J L G. Thermal decomposition of a hydrotalcite-containing Cu-Zn-Al precursor:Thermal methods combined with an in situ DRIFT study[J]. Phys Chem Chem Phys, 2002, 4(13):3122-3127. doi: 10.1039/b201996e
    [14] KANNAN S, RIVES V, KNOZINGER H. High-temperature transformations of Cu-rich hydrotalcites[J]. J Solid State Chem, 2004, 177(1):319-331. doi: 10.1016/j.jssc.2003.08.023
    [15] CHEN T H, FAN M D, QING C S, XU H F, SUN J, CHEN G. Structural evolution of heating treatment of Mg/Al LDH and preparation of mineral mesoporous materials[J]. Acta Petrol Mineral (in Chinese), 2005, 24(6):521-525.
    [16] KANNAN S, DUBEY A, KNOZINGER H. Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol[J]. J Catal, 2005, 231(2):381-392. doi: 10.1016/j.jcat.2005.01.032
    [17] 申延明.含Pd, Cu, Ni, Zr类水滑石的合成及其催化应用[D].大连:大连理工大学, 2009.

    SHEN Yan-ming. Preparation of hydrotalcite-like compounds containing Pd, Cu, Ni, Zr and their catalytic performances[D]. Dalian:Dalian University of Technology, 2009.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  50
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-27
  • 修回日期:  2016-11-18
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-01-10

目录

    /

    返回文章
    返回