留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼改性HZSM-5对催化MTP反应活性影响

陶佳怡 张建利 范素兵 马清祥 高新华 赵天生

陶佳怡, 张建利, 范素兵, 马清祥, 高新华, 赵天生. 硼改性HZSM-5对催化MTP反应活性影响[J]. 燃料化学学报(中英文), 2020, 48(9): 1105-1111.
引用本文: 陶佳怡, 张建利, 范素兵, 马清祥, 高新华, 赵天生. 硼改性HZSM-5对催化MTP反应活性影响[J]. 燃料化学学报(中英文), 2020, 48(9): 1105-1111.
TAO Jia-yi, ZHANG Jian-li, FAN Su-bing, MA Qing-xiang, GAO Xin-hua, ZHAO Tian-sheng. Effects of boron modification on the activity of HZSM-5 toward MTP[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1105-1111.
Citation: TAO Jia-yi, ZHANG Jian-li, FAN Su-bing, MA Qing-xiang, GAO Xin-hua, ZHAO Tian-sheng. Effects of boron modification on the activity of HZSM-5 toward MTP[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1105-1111.

硼改性HZSM-5对催化MTP反应活性影响

基金项目: 

宁夏重点研发计划东西部合作项目 2017BY063

国家自然科学基金 21563024

详细信息
  • 中图分类号: O643

Effects of boron modification on the activity of HZSM-5 toward MTP

Funds: 

East-West Cooperation Project, Key R & D Plan of Nignxia 2017BY063

National Natural Science Foundation of China 21563024

More Information
  • 摘要: 水热晶化一步合成了BHZSM-5分子筛,投料SiO2/Al2O3=100、200,其中,B2O3/Al2O3=1,研究了其甲醇制丙烯(MTP)催化活性。硼改性提高了丙烯选择性,并有利于稳定活性。硼修饰引起合成样品的强B酸量减少;水热(480℃)环境条件下,BHZSM-5的强B酸量保留量约50%,相比HZSM-5,酸性位点保留较多,显示增强的水热稳定性;同时骨架Al分布发生了变化:位于晶体直孔道和正弦孔道的Al稳定,孔道交叉口的Al易于脱除,有利于基于烯烃循环机理的MTP活性。水热处理空速由1 h-1增加到9 h-1,B酸量进一步下降,晶体孔道交叉口的Al脱除更多。
  • 图  1  MTP主要产物选择性随在线反应时间的变化

    Figure  1  Main product selectivity of MTP with time-on-stream

    图  2  样品的XRD谱图

    Figure  2  XRD patterns of as-prepared samples

    图  3  样品的27Al MAS NMR谱图

    Figure  3  27Al MAS NMR spectra of the samples

    图  4  样品的27Al MAS NMR分峰图

    Figure  4  Curve fitting for 27Al MAS NMR spectra of the samples

    表  1  样品命名及投料配比

    Table  1  Names and charging compositions of synthetic samples

    Name SiO2 /Al2O3 B2O3 /Al2O3 SiO2 /(Al2O3+B2O3)
    BHZ-5-100 100 1 50
    HZ-5-100 100 0 100
    BHZ-5-200 200 1 100
    HZ-5-200 200 0 200
    下载: 导出CSV

    表  2  合成样品的Py-FTIR酸性

    Table  2  Acidity of synthetic samples derived from Py-FTIR

    Sample B /(μmol·g-1) Total B/(μmol·g-1) Total L /(μmol·g-1)
    weak medium strong strong
    BHZ-5-100 225 107 96 428 12
    HZ-5-100 102 89 174 365 55
    BHZ-5-200 178 136 51 365 10
    HZ-5-200 123 56 94 273 41
    下载: 导出CSV

    表  3  样品的孔结构

    Table  3  Textural properties of different samples

    Sample WSHV/h-1 Crystallinity /% ABET/(m2·g-1) vtotal/(cm3·g-1) vmicro/(cm3·g-1) vmeso/(cm3·g-1)
    BHZ-5-100 1 108 352 0.206 0.137 0.069
    HZ-5-100 1 163 359 0.231 0.141 0.090
    BHZ-5-100 0 99 395 0.201 0.142 0.059
    HZ-5-100 0 100 388 0.200 0.146 0.054
    BHZ-5-100 9 106 349 0.199 0.136 0.063
    HZ-5-100 9 166 347 0.214 0.135 0.079
    下载: 导出CSV

    表  4  样品的峰面积

    Table  4  Proportions of deconvolution peak areas for different samples

    Samples WSHV/h-1 Proportions /% Al(d)/Al(c)
    Al(e) 58 Al(d) 56 Al(c) 54 Al(b) 53 Al(a) 52
    BHZ-5-100 1 12 30 25 17 15 1.20
    HZ-5-100 1 10 25 23 19 21 1.08
    BHZ-5-200 1 6 28 23 16 26 1.21
    HZ-5-200 1 4 28 27 20 21 1.03
    BHZ-5-100 0 4 29 29 18 19 1.00
    HZ-5-100 0 4 29 23 18 25 1.26
    BHZ-5-200 0 4 29 31 4 31 0.93
    HZ-5-200 0 4 29 29 4 33 1.00
    BHZ-5-100 9 13 31 23 16 16 1.37
    HZ-5-100 9 9 26 24 20 19 1.08
    BHZ-5-200 9 5 30 24 16 24 1.25
    HZ-5-200 9 5 27 25 20 23 1.08
    下载: 导出CSV

    表  5  样品的Py-FTIR酸性

    Table  5  Acidity of samples derived from Py-FTIR

    Sample WSHV /h-1 B /(μmol·g-1) Total B /(μmol·g-1) Total L /(μmol·g-1)
    weak medium strong strong
    BHZ-5-100 1 120 22 49 191 2
    HZ-5-100 1 93 31 40 164 38
    BHZ-5-200 1 69 25 24 118 0
    HZ-5-200 1 49 34 22 105 24
    BHZ-5-100 9 122 36 34 192 2
    HZ-5-100 9 53 42 31 126 29
    BHZ-5-200 9 98 2 51 151 0
    HZ-5-200 9 27 31 11 69 21
    下载: 导出CSV

    表  6  水热处理样品的MTP产物选择性

    Table  6  Product selectivity of MTP on hydrothermally treated samples

    Samples WSHV /h-1 Selectivity s/% C3=/C2= HTI
    C1 C2= C2 C3= C3 C4= C5+
    BHZ-5-100 1 5.0 26.2 0.3 31.1 3.5 8.8 16.1 1.18 0.31
    HZ-5-100 1 4.3 20.4 0.2 27.5 2.5 7.3 20.2 1.35 0.32
    BHZ-5-200 1 2.6 26.9 0.2 36.2 2.3 10.4 14.5 1.35 0.20
    HZ-5-200 1 2.8 23.9 0.2 36.3 2.2 9.6 17.2 1.52 0.22
    BHZ-5-100 0 8.3 28.7 0.7 26.0 5.1 7.1 17.2 0.91 0.36
    HZ-5-100 0 9.8 27.4 0.7 22.6 5.4 6.1 21.1 0.82 0.43
    BHZ-5-200 0 6.2 28.3 0.4 30.5 3.7 7.7 17.5 1.08 0.25
    HZ-5-200 0 7.8 28.4 0.6 27.7 5.1 7.7 17.0 0.97 0.31
    BHZ-5-100 9 4.4 25.3 0.3 33.6 2.6 9.2 17.1 1.33 0.24
    HZ-5-100 9 4.9 25.5 0.2 32.9 2.8 9.5 16.1 1.29 0.26
    BHZ-5-200 9 2.3 27.6 0.3 37.4 3.3 9.5 11.2 1.35 0.25
    HZ-5-200 9 1.9 23.8 0.3 37.4 3.1 10.0 15.8 1.52 0.23
    time-on-stream: 6 h; methanol conversion: 100%
    下载: 导出CSV
  • [1] TARACH K A, MARTINEZ-TRIGUERO J, REY F, GÓRA-MAREK K. Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5[J]. J Catal, 2016, 339:256-269. doi: 10.1016/j.jcat.2016.04.023
    [2] BENITO P L, GAYUBO A G, AGUAYO A T, OLAZAR M, BILBAO J. Deposition and characteristics of coke over a H-ZSM-5 zeolite-based catalyst in the MTG process[J]. Ind Eng Chem Res, 1996, 35:3991-3998. doi: 10.1021/ie950462z
    [3] 温鹏宇, 梅长松, 刘红星, 杨为民, 陈庆龄. ZSM-5硅铝比对甲醇制丙烯反应产物的影响[J].化学反应工程与工艺, 2007, 23(5):385-390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfygcygy200705001

    WEN Peng-yu, MEI Chang-song, LIU Hong-xing, YANG Wei-min, CHEN Qing-ling. Effect of Si/Al ratio in ZSM-5 on the selectivity of products for methanol conversion to propylene[J]. Chem React Eng Technol, 2007, 23(5):385-390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfygcygy200705001
    [4] ZHAO T S, TAKEMOTO T, TSUBAKI N. Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J]. Catal Commun, 2006, 7(9):647-650. doi: 10.1016/j.catcom.2005.11.009
    [5] 刘文丽. HZSM-5催化剂酸性调变对甲醇制烯烃反应性能的影响研究[D].银川: 宁夏大学, 2017.

    LIU Wen-li. Study on the acidity adjustment of HZSM-5[D]. Yinchuan: Ningxia University, 2017.
    [6] PARK S, BILIGETU T, WANG Y, NISHITOBA T, KONDO J N, YOKOI T. Acidic and catalytic properties of ZSM-5 zeolites with different Al distributions[J]. Catal Today, 2018, 303:64-70. doi: 10.1016/j.cattod.2017.07.022
    [7] BILIGETU T, WANG Y, NISHITOBA T, OTOMO R, PARK S, MOCHIZUKI H, KONDO J N, TATSUMI T, YOKOI T. Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols[J]. J Catal, 2017, 353:1-10. doi: 10.1016/j.jcat.2017.06.026
    [8] HOLZINGER J, BEATO P, LUNDEGAARD L F, SKIBSTED J. Distribution of aluminum over the tetrahedral sites in ZSM-5 zeolites and their evolution after steam treatment[J]. J Phys Chem C, 2018, 122(27):15595-15613. doi: 10.1021/acs.jpcc.8b05277
    [9] SANHOOB M A, MURAZA S, SHAFEI E N, YOKOI T, CHOI K H. The steam catalytic cracking of heavy naphtha (C12) to high octane naphtha over B-MFI zeolite[J]. Appl Catal B. Environ, 2017, 210:432-443. doi: 10.1016/j.apcatb.2017.04.001
    [10] YANG Y S, SUN C, DU J M, YUE Y H, HUA W M, ZHANG C L, SHEN W, XU H L. The synthesis of endurable B-Al-ZSM-5 catalyst with tunable acidity for methanol to propylene reaction[J]. Catal Commun, 2012, 24:44-47. doi: 10.1016/j.catcom.2012.03.013
    [11] LI C G, VIDAL-MOYA A, MIGUEL P J, DEDECEK J, BORONAT M, CORMA A. Selectively introducing acid sites in different confined positions in ZSM-5 and its catalytic implications[J]. ACS Catal, 2018, 8(8):7688-7697. doi: 10.1021/acscatal.8b02112
    [12] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141:347-354. doi: 10.1006/jcat.1993.1145
    [13] HU Z J, ZHANG H B, WANG L, ZHANG H X, ZHANG Y H, XU H L, SHEN W, TANG Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction[J]. Catal Sci Technol, 2014, 4:2981-2985. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=254505ade0d94a3000dfc23bc1551933
    [14] DING C H, WANG X S, GUO X W, ZHANG S G. Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst[J]. Catal Commun, 2007, 9:487-493. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1924aee810170c226b98290aa322b16
    [15] 周振垒, 李啄, 王博, 彭伟才, 李建青, 吴晋沪. ZSM-5的水热改性及其在合成气经二甲醚制汽油中的应用[J].燃料化学学报, 2013, 41(11):1349-1355. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201311011

    ZHOU Zhen-lei, LI Zhou, WANG Bo, PENG Wei-cai, LI Jian-qing, WU Jin-hu. Hydrothermal treatment of ZSM-5 and its application in syngas via DME[J]. J Fuel Chem Technol, 2013, 41(11):1349-1355. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201311011
    [16] KANELLOPOULOS J, YNGER A, SCHWIEGER W, FREUDE D. Catalytic and multinuclear MAS NMR studies of a thermally treated zeolite ZSM-5[J]. J Catal, 2006, 237:416-425. doi: 10.1016/j.jcat.2005.11.030
    [17] CHEN T H, WOUTERS B H, GROBET P J. Aluminium coordination in zeolite mordenite by27Al multiple quantum MAS NMR spectroscopy[J]. Eur J Inorg Chem, 2000, 2:281-285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3ff9d8f3ee73e3d0b250f1b5074d796f
    [18] YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J N, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J Phys Chem C, 2015, 119:15303-15315. doi: 10.1021/acs.jpcc.5b03289
    [19] FU T J, MA Z, WANG Y J, SHAO J, MA Q, ZHANG C M, CUI L P, LI Z. Si/Al ratio induced structure evolution during desilication-recrystallization of silicalite-1 to synthesis nano-ZSM-5 catalyst for MTH reaction[J]. Fuel Process Technol, 2019, 194:106122. doi: 10.1016/j.fuproc.2019.106122
    [20] LIU H, WANG H, XING A H, CHENG J H. Effect of Al distribution in MFI framework channels on the catalytic performance of ethane and ethylene aromatization[J]. J Phys Chem C, 2015, 119(27):15303-15315. doi: 10.1021/acs.jpcc.5b03289
    [21] ERICHSEN M W, SVELLE S, OLSBYE U. The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction[J]. Catal Today, 2013, 215:216-223. doi: 10.1016/j.cattod.2013.03.017
    [22] LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over H-ZSM-5 zeolite:Reaction pathway is related to the framework aluminum siting[J]. ACS Catal, 2016, 6:7311-7325. doi: 10.1021/acscatal.6b01771
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  64
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 修回日期:  2020-07-07
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-09-10

目录

    /

    返回文章
    返回