留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载氯的分级多孔炭制备及其脱汞性能的研究

石其其 王玉亭 沈伯雄 张笑

石其其, 王玉亭, 沈伯雄, 张笑. 负载氯的分级多孔炭制备及其脱汞性能的研究[J]. 燃料化学学报(中英文), 2019, 47(8): 1000-1007.
引用本文: 石其其, 王玉亭, 沈伯雄, 张笑. 负载氯的分级多孔炭制备及其脱汞性能的研究[J]. 燃料化学学报(中英文), 2019, 47(8): 1000-1007.
SHI Qi-qi, WANG Yu-ting, SHEN Bo-xiong, ZHANG Xiao. Synthesis of hierarchical porous carbon loaded with chlorine and its mercury removal performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 1000-1007.
Citation: SHI Qi-qi, WANG Yu-ting, SHEN Bo-xiong, ZHANG Xiao. Synthesis of hierarchical porous carbon loaded with chlorine and its mercury removal performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 1000-1007.

负载氯的分级多孔炭制备及其脱汞性能的研究

基金项目: 

国家自然科学基金青年项目 51808181

天津自然科学基金重点 18JCZDJC39800

天津科技重大专项与工程 18ZXSZSF00040

天津科普项目 18KPXMSF00080

天津平台项目 18PTZWHZ00010

唐山科技计划项目 18130211A

详细信息
  • 中图分类号: X511

Synthesis of hierarchical porous carbon loaded with chlorine and its mercury removal performance

Funds: 

the National Natural Science Foundation Youth Project 51808181

Tianjin Natural Science Foundation Key Project 18JCZDJC39800

Tianjin Science and Technology Major Special Project and Engineering 18ZXSZSF00040

Tianjin Science Popularization Project 18KPXMSF00080

Tianjin Platform Project 18PTZWHZ00010

Tangshan Science and Technology Project 18130211A

More Information
  • 摘要: 以纳米碳酸钙为模板,水稻秸秆为碳前驱体,采用共热解法制备了负载氯的分级多孔生物质炭。在模拟烟气条件下,利用固定床实验台架研究了生物质碳材料对烟气中的单质汞(Hg0)的脱除性能。采用扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附(BET)、程序升温脱附(Hg-TPD)以及X射线光电子能谱(XPS)等方法对材料进行表征。结果表明,盐酸浸渍不仅可去除模板产物生成多孔结构,并且有效地将氯负载到材料表面。负载氯的分级多孔炭B1C1-Cl2的比表面积和总孔容分别达到398.1 m2/g和0.4923 cm3/g。在120℃,空速(GHSV)为225000 h-1时,脱汞效率可达95%。多孔结构有利于气体扩散,高比表面积为材料提供了更多的反应位点,微孔-介孔内表面上的C-Cl共价键为脱汞的主要化学吸附活性位点。
  • 图  1  实验装置示意图

    Figure  1  Schematic diagram of bench scale Hg0 adsorption test system

    图  2  B1C0和B1C1-Cl2的SEM和TEM照片

    Figure  2  SEM images of B1C0(e) and B1C1-Cl2((a), (b)), and B1C1-Cl2((c), (d)), and TEM images of B1C0(f)

    图  3  吸附剂的N2吸附-脱附曲线和孔径分布

    Figure  3  N2 adsorption-desorption curves at 77 K (a), DFT pore size distributions by pore volume ((b), (c)) and DFT pore size distributions by surface area (d)

    图  4  不同混合质量比的吸附剂对Hg0脱除效率的影响

    Figure  4  Effect of sorbents with different mass ratios on removal efficiency of Hg0

    图  5  HCl处理的吸附剂对Hg0脱除效率的影响

    Figure  5  Effect of sorbents with HCl treatment on removal efficiency of Hg0

    图  6  B1C1-Cl2和B1C2-Cl2的TPD实验数据及拟合分析图

    Figure  6  TPD experimental data and fitting analysis of B1C1-Cl2 and B1C2-Cl2

    图  7  吸附剂中Cl 2p的XPS谱图

    Figure  7  XPS spectra of Cl 2p for B1C0, B1C1-Cl2 and B1C2-Cl2

    表  1  吸附剂的孔结构参数

    Table  1  Pore structural parameters of sorbents

    Sorbent ABET/(m2·g-1) Pore volume v/(cm3·g-1) R/nm
    vT vmic vmes
    B1C0 88.29 0.1285 0.0000 0.0954 5.82
    B3C1 329.5 0.3613 0.1003 0.1517 4.38
    B2C1 560.2 0.6859 0.0315 0.4348 4.89
    B1C1 591.3 0.5952 0.0683 0.4548 4.31
    B1C2 742.5 0.6972 0.1020 0.4768 3.75
    B1C3 428.7 0.4655 0.0387 0.3368 4.34
    B1C1-Cl0.5 447.1 0.5107 0.0539 0.3598 4.32
    B1C1-Cl2 398.1 0.4923 0.0548 0.3011 4.94
    B1C1-Cl5 364.5 0.4188 0.0726 0.2175 4.59
    下载: 导出CSV

    表  2  XPS谱图中相关官能团含量

    Table  2  Related functional groups obtained from XPS spectra

    Sample Atom content/% >Relative intensity/%
    C Cl Ca Cl- C-Cl 2p3/2 C-Cl 2p1/2
    B1C0 90.5 0.40 0.07 23.08 19.20 57.71
    B1C1-Cl2 88.5 1.50 0.10 2.36 63.68 33.95
    B1C2-Cl2 68.93 1.25 0.17 6.13 59.68 34.18
    下载: 导出CSV
  • [1] 高兰君, 王夫美, 吴撼明, 潘奕君, 沈伯雄. Ce-Co/KIT-6介孔材料的制备及其脱汞性能的研究[J].燃料化学学报, 2017, 45(8):1017-1024. doi: 10.3969/j.issn.0253-2409.2017.08.016

    GAO Lan-jun, WANG Fu-mei, WU Han-ming, PAN Yi-jun, SHEN Bo-xiong. Synthesis of mesoprous materials with Ce-Co/KIT-6 and its mercury removal performance[J]. J Fuel Chem Technol, 2017, 45(8):1017-1024. doi: 10.3969/j.issn.0253-2409.2017.08.016
    [2] ZHOU Q, DUAN Y F, CHEN M M, LIU M, LU P. Studies on mercury adsorption species and equilibrium on activated carbon surface[J]. Energy Fuels, 2017, 31(12):14211-14218. doi: 10.1021/acs.energyfuels.7b02699
    [3] LI H L, WU C Y, LI Y, ZHANG J Y. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Appl Catal B:Environ, 2012, 111/112:381-388. doi: 10.1016/j.apcatb.2011.10.021
    [4] XU Y, ZENG X B, LUO G Q, ZHANG B, XU P, XU M H, YAO H. Chlorine-char composite synthesized by co-pyrolysis of biomass wastes and polyvinyl chloride for elemental mercury removal[J]. Fuel, 2016, 183:73-79. doi: 10.1016/j.fuel.2016.06.024
    [5] LI G L, WANG S X, WANG F M, WU Q R, TANG Y, SHEN B X. Role of inherent active constituents on mercury adsorption capacity of chars from four solid wastes[J]. Chem Eng J, 2017, 307:544-552. doi: 10.1016/j.cej.2016.08.106
    [6] WU J, LI Z, SONG Y. Preparation of biomass-derived hierarchically porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries[J]. J Alloy Compd, 2016, 656:745-752. doi: 10.1016/j.jallcom.2015.10.063
    [7] XU B, HOU S S, ZHANG F, ZHANG F L, CAO G P, CHU M, YANG Y S. Nitrogen-doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors[J]. J Electroanal Chem, 2014, 712:146-150. doi: 10.1016/j.jelechem.2013.11.020
    [8] ISLAM M A, TAN I A W, BENHOURIA A, BEN A, ASIF M, HAMEED B H. Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation[J]. Chem Eng J, 2015, 270:187-195. doi: 10.1016/j.cej.2015.01.058
    [9] ZHAO P F, GUO X, ZHENG C G. Removal of elemental mercury by iodine-modified rice husk ash sorbents[J]. J Environ Sci-China, 2010, 22(10):1629-1636. doi: 10.1016/S1001-0742(09)60299-0
    [10] XU B, PENG L, WANG G, CAO G P, WU F. Easy synthesis of mesoporous carbon using nano-CaCO3 as template[J]. Carbon, 2010, 48(8):2377-2380. doi: 10.1016/j.carbon.2010.03.003
    [11] CAO B, LIU H, XU B, LEI Y F, CHEN X H, SONG H H. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. J Mater Chem A, 2016, 4(17):6472-6478. doi: 10.1039/C6TA00950F
    [12] LI G L, SHEN B X, LI Y W, ZHAO B, WANG F M, HE C, WANG Y Y, ZHANG M. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions[J]. J Hazard Mater, 2015, 298:162-169. doi: 10.1016/j.jhazmat.2015.05.031
    [13] ZU G Q, SHEN J, ZOU L O, WANG F, WANG X D, ZHANG Y W, YAO X D. Nanocellulose-derived highly porous carbon aerogels for supercapacitors[J]. Carbon, 2015, 99:203-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c4fb30ff6283ac39dadd8c14ac600bf
    [14] KONG L J, LIU M X, DIAO Z H, CHEN D Y, CHANG X Y, XIONG Y. Coupling template nanocasting and self-activation for fabrication of nanoporous carbon[J]. Sci Rep, 2016, 6:38176. doi: 10.1038/srep38176
    [15] WANG T, WU J W, ZHANG Y S, LIU J, SUI Z F, ZHANG H C, CHEN W Y, NORRIS P, PAN W P. Increasing the chlorine active sites in the micropores of biochar for improved mercury adsorption[J]. Fuel, 2018, 229:60-67. doi: 10.1016/j.fuel.2018.05.028
    [16] GHORISHI S B, KEENEY R M, SERRE S D. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury[J]. Environ Sci Technol, 2002, 36(20):4454-4459. doi: 10.1021/es0255608
    [17] LI G L, WANG S X, WU Q R, WANG F Y, SHEN B X. Mercury sorption study of halides modified bio-chars derived from cotton straw[J]. Chem Eng J, 2016, 302:305-313. doi: 10.1016/j.cej.2016.05.045
    [18] IRIARTE-VELASCO U, SIERRA I, ZUDAIRE L, AYASTUY J L. Preparation of a porous biochar from the acid activation of pork bones[J]. Food Bioprod Process, 2016, 98:341-353. doi: 10.1016/j.fbp.2016.03.003
    [19] LI G L, WANG S X, WU Q G, WANG, F Y, DING D, SHEN B X. Mechanism identification of temperature influence on mercury adsorption capacity of different halides modified bio-chars[J]. Chem Eng J, 2017, 315:251-261. doi: 10.1016/j.cej.2017.01.030
    [20] LI G L, SHEN B X, WANG Y, YUE S J, XI Y Q, AN M D, REN K K. Comparative study of element mercury removal by three bio-chars from various solid wastes[J]. Fuel, 2015, 145:189-195. doi: 10.1016/j.fuel.2014.12.083
    [21] SANO A, TAKAOKA M, SHIOTA K. Vapor-phase elemental mercury adsorption by activated carbon co-impregnated with sulfur and chlorine[J]. Chem Eng J, 2017, 315:598-607. doi: 10.1016/j.cej.2017.01.035
    [22] LEE S F, SEO Y C, JURNG J, LEE T G. Removal of gas-phase elemental mercury by iodine- and chlorine-impregnated activated carbons[J]. Atmos Environ, 2004, 38(29):4887-4893. doi: 10.1016/j.atmosenv.2004.05.043
    [23] XU Y, ZENG X B, ZHANG B, ZHU X Q, ZHOU M L, ZOU R J, SUN P, LUO G Q, YAO H. Experiment and kinetic study of elemental mercury adsorption over a novel chlorinated sorbent derived from coal and waste polyvinyl chloride[J]. Energy Fuels, 2016, 30(12):10635-10642. doi: 10.1021/acs.energyfuels.6b01372
    [24] XU Y, LUO G Q, HE S W, DENG F F, PANG Q, XU Y Q, YAO H. Efficient removal of elemental mercury by magnetic chlorinated biochars derived from co-pyrolysis of Fe(NO3)3-laden wood and polyvinyl chloride waste[J]. Fuel, 2019, 239:982-990. doi: 10.1016/j.fuel.2018.11.102
    [25] 赵鹏飞, 郭欣, 郑楚光.活性炭及氯改性活性炭吸附单质汞的机制研究[J].中国电机工程学报, 2010, 30(23):40-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201023007

    ZHAO Peng-fei, GUO Xin, ZHENG Chu-guang. Investigating the mechanism of elemental mercury binding on activated carbon and chlorine-embedded activated carbon[J]. Proc CSEE, 2010, 30(23):40-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201023007
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  155
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-12
  • 修回日期:  2019-05-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-08-10

目录

    /

    返回文章
    返回