留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低阶煤热萃取物与瘦煤共炭化焦炭的微观结构及显微强度研究

朱亚明 唐帅 赵雪飞 赵春雷 袁霁 胡朝帅 闫立东

朱亚明, 唐帅, 赵雪飞, 赵春雷, 袁霁, 胡朝帅, 闫立东. 低阶煤热萃取物与瘦煤共炭化焦炭的微观结构及显微强度研究[J]. 燃料化学学报(中英文), 2018, 46(9): 1036-1043.
引用本文: 朱亚明, 唐帅, 赵雪飞, 赵春雷, 袁霁, 胡朝帅, 闫立东. 低阶煤热萃取物与瘦煤共炭化焦炭的微观结构及显微强度研究[J]. 燃料化学学报(中英文), 2018, 46(9): 1036-1043.
ZHU Ya-ming, TANG Shuai, ZHAO Xue-fei, ZHAO Chun-lei, YUAN Ji, HU Chao-shuai, YAN Li-dong. Micro-structure and micro-strength of coke from co-carbonization of lean coal and thermal extract from low rank coal[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1036-1043.
Citation: ZHU Ya-ming, TANG Shuai, ZHAO Xue-fei, ZHAO Chun-lei, YUAN Ji, HU Chao-shuai, YAN Li-dong. Micro-structure and micro-strength of coke from co-carbonization of lean coal and thermal extract from low rank coal[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1036-1043.

低阶煤热萃取物与瘦煤共炭化焦炭的微观结构及显微强度研究

基金项目: 

国家自然科学基金 U1361212

辽宁省教育厅青年项目 2017LNQN04

辽宁科技大学青年项目 2017QN06

详细信息
  • 中图分类号: TQ520

Micro-structure and micro-strength of coke from co-carbonization of lean coal and thermal extract from low rank coal

Funds: 

the National Nature Science Foundation of China U1361212

the Youth Fund of the Education Department of Liaoning Province 2017LNQN04

the Youth Fund of University of Science and Technology Liaoning 2017QN06

More Information
  • 摘要: 以众唯瘦煤作为主炼焦煤,大同长焰煤萃取物作为添加剂,进行共炭化处理制备坩埚焦。利用偏光显微镜法定量研究焦炭光学显微组分,获得焦炭的各向异性指数(DRAS);采用XRD及分峰拟合的方法研究了焦炭的微晶粒径(Lc)、芳香缩合度(Ia)、石墨化度(g);利用Raman光谱结合分峰拟合的方法研究了焦炭中理想石墨微晶含量(Ig)。对所得焦炭的光学显微组分进行定量分析发现:大同长焰煤热解萃取产物的添加对共炭化焦炭的光学显微组分有显著的影响,利用偏光显微镜法计算出焦炭的DRAS与XRD和Raman计算的焦炭微晶参数呈现很好一致性。并且,焦炭的显微强度与其微观结构关联性极大。
  • 图  1  焦炭的偏光显微结构

    (a): F+Fi+Mf+I; (b): L+Mf+Fi+Mm+Mm; (c): I+F+Mm+Mf; (d): L+F+Fi+I; (e): I+F+FF+Mc; (f): L+F

    Figure  1  Optical structure of cokes

    图  2  共炭化焦炭的各向异性指数(DRAS)

    Figure  2  DRAS of each co-carbonization cokes

    图  3  共炭化焦炭的XRD谱图(a)和拟合谱(b)

    Figure  3  XRD images of co-carbonization cokes (a) and curve-fitted images (b)

    图  4  焦炭的Raman光谱(a)和拟合谱图(b)

    Figure  4  Raman spectra of cokes (a) and curve-fitted spectrum (b)

    表  1  DTLFPE的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of DTLFPE

    Proximate analysis Ultimate analysis w/%
    Vdaf /% SP/℃ TI /% QI /% CV/% C H N S O*
    76.02 86.8 6.65 0.6 44.54 84.20 5.35 0.41 - 10.04
    Vdaf: volatile component; SP: softening point; TI: toluene insoluble; QI: quinoline insoluble; CV: coke value; *: by difference
    下载: 导出CSV

    表  2  LC的指标分析

    Table  2  Parameters of LC sample

    Proximate analysis w/% Conventional index for coal
    Mad Ad Vdaf FCdaf St, d Y X G a/% b/%
    0.67 11.17 19.95 80.05 0.24 8.4 21.1 47 25.7 -
    St, d: total sulfur; X: plastometric shrinkage; Y: maximum thickness of colloidal matter layer; a: maximum contraction; b: maximum dilatation
    下载: 导出CSV

    表  3  焦炭的显微强度

    Table  3  Micro-strength of each coke

    Sample No. LC-0 LC-1% LC-3% LC-5% LC-7%
    MSa/% 0 13.95 28.25 44.79 42.84
    a: means for micro-strength of coke
    下载: 导出CSV

    表  4  焦炭的光学组织分布

    Table  4  Optical structure parameters of cokes

    Sample Optical microstructure/%
    I Mf Mm Mc Fi F L FF
    LC-0 50.96 11.13 7.02 6.86 10.03 6.68 6.15 1.17
    LC-1% 47.83 10.47 8.63 6.35 11.80 6.01 8.22 0.69
    LC-3% 39.49 12.66 9.64 6.66 14.49 6.39 9.96 0.71
    LC-5% 37.48 13.57 8.92 5.42 14.46 7.79 11.43 0.93
    LC-7% 32.52 13.74 10.44 6.05 15.31 7.14 13.15 1.65
    下载: 导出CSV

    表  5  焦炭微晶参数

    Table  5  Structural parameters of the carbon stacking structure

    Sample γ/(°) π/(°) Aγa Aπb Ia/% d002/nm Lc/nm N n g/%
    LC-0% 22.70289 25.99353 949.78 962.38 50.33 0.3425 2.18 7.36 17.33 17.28
    LC-1% 23.06678 26.05383 879.01 989.17 52.95 0.3417 2.26 7.60 18.48 26.34
    LC-3% 23.38885 26.07317 829.53 1090.85 56.80 0.3415 2.35 7.88 19.86 29.24
    LC-5% 23.31953 26.19762 763.71 1265.83 62.37 0.3399 2.40 8.06 20.77 47.77
    LC-7% 23.40742 26.15587 702.94 1120.60 61.45 0.3404 2.32 7.82 19.56 41.58
    a: integrate area of γ band; b: integrate area of π band
    下载: 导出CSV

    表  6  文献报道[28-32]Raman峰的归属

    Table  6  Raman bands and vibration modes reported by literatures[28-32]

    Band Raman shift δ/cm-1 Vibration mode
    G 1580 ideal graphitic lattice (E2g-symmetry)
    D1 1350 disordered graphitic lattice (graphene layer edges, A1g symmetry)
    D2 1620 disordered graphitic lattice (surface graphene layers, E2g-symmetry)
    D3 1500 amorphous carbon (gaussion line shape)
    D4 1200 disordered graphitic lattice (A1g symmetry), polyenes, ionic impurities
    下载: 导出CSV

    表  7  焦炭的Raman参数

    Table  7  Raman parameters of each coke

    Sample Integrate area Ratio/%
    ID1 ID2 ID3 ID4 IG IG/ IAll ID3/ IAll
    LC-0% 23146.95 225765.7 48950.46 22578.54 29579.66 8.45 13.98
    LC-1% 23457.88 143800.4 34096.55 19822.03 27014.69 10.88 13.74
    LC-3% 28095.09 176781.5 40719.01 21135.77 34306.77 11.40 13.53
    LC-5% 30693.6 200197.3 44021.84 20315.49 44365.68 13.06 12.96
    LC-7% 22841.11 174445.4 38702.16 16398.72 34135.82 11.91 13.51
    下载: 导出CSV
  • [1] SHUI H F, ZHENG M D, WANG Z C, LI X M. Effect of coal soluble constituents on caking properties of coal[J]. Fuel, 2007, 186(10/11):1396-1401.
    [2] SHUI H F, ZHAO W J, SHAN C J, SHUI T, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G. Caking and coking properties of the thermal dissolution soluble fraction of a fat coal[J]. Fuel Process Technol, 2014, 118(2):64-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0231834001
    [3] SHUI H F, ZHENG M D, WANG Z C, LI X M. Effect of coal soluble constituents on caking property of coal[J]. Fuel, 2007, 86(10):1396-1401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ024274289
    [4] KOSZOREK A, KRZESIŃSKA M, PUSZ S, PUSZ B, KWIECIŃSKA B. Relationship between the technical parameters of cokes produced from blends of three Polish coals of different coking ability[J]. Int J Coal Geol, 2009, 77(2):363-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0210368865
    [5] SHUI H F, WU Y, WANG Z C, LEI Z P, LIN C H, REN S B, PAN C X, KANG S G. Hydrothermal treatment of a sub-bituminous coal and its use in coking blends[J]. Energy Fuels, 2013, 27(1):138-144. doi: 10.1021/ef301539x
    [6] NORINAGA K, HAYASHI J I, KATO R, CHIBA T. Reduction in thermo plasticity of Illinois No. 6 coal by heat treatment in refluxing chlorobenzene[J]. Energy Fuels, 2000, 14(2):511-512. doi: 10.1021/ef990137e
    [7] SHARMA A, TAKANOHASHI T, MORISHITA K, TAKARADA T, SAITO I. Low temperature catalytic steam gasification of hyper-coal to produce H2 and synthesis gas[J]. Fuel, 2008, 87(4):491-497.
    [8] TAKANOHASHI T, SHISHIDO T, SAITO I. Effects of hyper coal addition on coke strength and thermoplasticity of coal blends[J]. Energy Fuels, 2008, 22(3):1779-1783. doi: 10.1021/ef7007375
    [9] CHANG C M, WHANG T J, HUANG D S, WANG D, TSAI S T. Thermoplasticity and strength improvement of coking coal by addition of coal extracts[J]. Fuel, 2014, 117(1):364-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232105668
    [10] YOSHIDA T, LI T, TAKANOHASHI T, MATSUMURA A, SATO S, SAITO I. Effect of extraction condition on "hypercoal" production (2):effect of polar solvents under hot filtration[J]. Fuel Process Technol, 2004, 86(1):61-72. doi: 10.1016/j.fuproc.2003.12.003
    [11] OKUYAMA N, KOMATSU N, SHIGEHISA T, KANEKO T, TSURUYA S. Hyper-coal process to produce the ash-free coal[J]. Fuel Process Technol, 2004, 85(8):947-967.
    [12] KASHIMURA N, TAKANOHASHI T, MASAKI K, SHISHIDO T, SATO S, MATSUMURA A, SAITO I. Relationship between thermal extraction yield and oxygen-containing functional groups[J]. Energy Fuels, 2006, 20(5):2088-2092. doi: 10.1021/ef060194p
    [13] NISHIBATA Y. Effect of hyper coal addition to coal on coke quality[J]. Proceedings icsti, 2006, 640-643. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC025203051
    [14] BRASHAW W, MAMONE V. Structural characterization of graphitic cokes and product thereof[M]. Qxford:Qxford University Press, 1976.
    [15] MARSH H, CORNFORD C. Mesophase:The precursor to graphitizable carbon[M]. Qxford:Qxford University Press, 1976.
    [16] 钱树安, 宋孝真, 范仁礼, 李春锋.针状焦的微结构特征-关于针焦品质评价的新观点[J].燃料化学学报, 1981, 9(2):105-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002478954

    QIAN Shu-an, SONG Xiao-zhen, FAN Ren-li, LI Chun-feng. The microstructural characteristics of needle cokes-new concept on evaluation of needle coke properties[J]. J Fuel Chem Technol, 1981, 9(2):105-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002478954
    [17] 吴晓英.烟煤高温焦炭微晶结构X衍射研究[J].西安矿业学院学报, 1999, 19(2):158-160. doi: 10.3969/j.issn.1672-9315.1999.02.015

    WU Xiao-ying. Study of XRD on the crystallite structure characteristics of high temperature coke of coals[J]. J Xi'an Ming Inst, 1999, 19(2):158-160. doi: 10.3969/j.issn.1672-9315.1999.02.015
    [18] ANDRIANI G F, WALSH N. Physical properties and textural parameters of calcarenitic rocks:Qualitative and quantitative evaluations[J]. Eng Geol, 2002, 67(1):5-15. http://cn.bing.com/academic/profile?id=d684a86e52ec785f33534af1d2a03b2b&encoded=0&v=paper_preview&mkt=zh-cn
    [19] SMEDOWSKI Y, KRZESIN S M, KWAS N W, KOZANECKI M. Development of ordered structures in the high-temperature(HT) cokes from binary and ternary coal blends studied by meansof X-ray diffraction and raman spectroscopy 2011 American chemical society[J]. Energy Fuels, 2011, 25(7):3142-3149. doi: 10.1021/ef200609t
    [20] 房永征, 曹银平, 金鸣林, 杨俊和, 钱湛芬.添加无烟煤对焦炭微晶和气孔结构的影响[J].钢铁, 2006, 41(10):16-18. http://d.old.wanfangdata.com.cn/Periodical/gt200610003

    FANG Yong-zheng, CAO Yin-ping, JIN Ming-lin, YANG Jun-he, QIAN Zhan-fen. Effect of anthracite in coal blend on micro-crystal and pore structure of coke[J]. Iron Steel, 41(10):16-18. http://d.old.wanfangdata.com.cn/Periodical/gt200610003
    [21] 张琢, 谢峰, 郑义, 程欢, 汪琦.焦炭的微晶结构及其对反应性的影响[J].燃料化学学报, 2018, 46(4):406-412.

    ZHANG Zhuo, XIE Feng, CHENG Huan, WANG Qi. Coke microcrystalline texture and its effect on coke reactivity[J]. J Fuel Chem Technol, 2018, 46(4):16-18.
    [22] 朱亚明, 唐帅, 赵雪飞, 赖仕全, 高丽娟.长焰煤热解萃取物对单种煤成焦性的影响[J].燃料与化工, 2016, 47(1):1-3. doi: 10.3969/j.issn.1001-3709.2016.01.001

    ZHU Ya-ming, TANG Shuai, ZHAO Xue-fei, LAI Shi-quan, GAO Li-juan. Influence of pyrolytic extracts of long flame coal to the coking properties of individual coal[J]. Fuel Chem Process, 2016, 47(1):1-3. doi: 10.3969/j.issn.1001-3709.2016.01.001
    [23] NOMURA S, KATO K, NAKAGAWA T, KOMAKI I. The effect of plastic addition on coal caking properties during carbonization[J]. Fuel, 2003, 82:1775-1782. doi: 10.1016/S0016-2361(03)00120-0
    [24] SHUI H F, HE F, WU Y, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G. Study on the use of the thermal dissolution soluble fraction from shenfu sub-bituminous coal in coke-making coal blends[J]. Energy Fuels, 2015, 29(13):1558-1563.
    [25] 姚昭章, 郑明东.炼焦学[M].北京:冶金工业出版社, 2015.

    YAO Zhao-zhang, ZHENG Ming-dong. Coking Technology[M]. 3rd ed. Beijing:Metallurgical Industry Press, 2015.
    [26] MANOJ B, KUNJOMANA A G. Study of stacking structure of amorphous carbon by X-ray diffraction technique[J]. Int J Electrochem Sci, 2012, 7(4):3127-3134.
    [27] MORGA R, JOLONEK I, KRUSZEWSKA K, SZULIK W. Relationships between quality of coals, resulting cokes, and micro-raman spectral characteristics of these cokes[J]. Int J Coal Geol, 2015, 144(1):130. http://cn.bing.com/academic/profile?id=e29c6426b14e8dfc2364c6ca08715b62&encoded=0&v=paper_preview&mkt=zh-cn
    [28] SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018
    [29] MORGA R. Micro-raman spectroscopy of carbonized semifusinite and fusinite[J]. Int J Coal Geol, 2011, 87(3):253-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0224948617
    [30] BEYSSAC O, GOFFÉ B, PETITET J P, IGNEUX E, MOREAU M, ROUZAUD J N. On the characterization of disordered and heterogeneous carbonaceous materials by raman spectroscopy[J]. Spectrochim Acta A, 2003, 59(10):2267-2276. doi: 10.1016/S1386-1425(03)00070-2
    [31] ZHU Y M, ZHAO X F, GAO L J, CHENG J X, LV J, LAI S Q. Quantitative study of the microcrystal structure on coal based on needle coke with curve-fitted of XRD and Raman spectrum[J]. Spectrosc Spect Anal, 2017, 37(6):1919-1924. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201706049
    [32] ZHU Y M, ZHAO X F, GAO L J, LV J, CHENG J X, LAI S Q. Study on the pyrolysis characteristic and the microstructure of the pyrolysis products of β resins from different coal tar pitch[J]. J Chem Soc Pakistan, 2018, 40(2):343-353.
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  73
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-22
  • 修回日期:  2018-07-20
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-09-10

目录

    /

    返回文章
    返回