留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of hydrothermal pH value on composition and morphology of bismuth oxybromide and their photocatalytic performance

ZHANG Hong-guang WANG Wen-tai FENG Li-juan LI Chun-hu WANG Liang

张红光, 王文泰, 冯丽娟, 李春虎, 王亮. 水热pH值对溴氧化铋组成、形貌及光催化性能的影响[J]. 燃料化学学报(中英文), 2019, 47(5): 582-589.
引用本文: 张红光, 王文泰, 冯丽娟, 李春虎, 王亮. 水热pH值对溴氧化铋组成、形貌及光催化性能的影响[J]. 燃料化学学报(中英文), 2019, 47(5): 582-589.
ZHANG Hong-guang, WANG Wen-tai, FENG Li-juan, LI Chun-hu, WANG Liang. Effect of hydrothermal pH value on composition and morphology of bismuth oxybromide and their photocatalytic performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 582-589.
Citation: ZHANG Hong-guang, WANG Wen-tai, FENG Li-juan, LI Chun-hu, WANG Liang. Effect of hydrothermal pH value on composition and morphology of bismuth oxybromide and their photocatalytic performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 582-589.

水热pH值对溴氧化铋组成、形貌及光催化性能的影响

基金项目: 

The project was supported by the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering 2018-K21

详细信息
  • 中图分类号: X703

Effect of hydrothermal pH value on composition and morphology of bismuth oxybromide and their photocatalytic performance

Funds: 

The project was supported by the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering 2018-K21

More Information
  • 摘要: 通过调节pH值一步水热法制备溴氧化铋光催化剂,并利用X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见漫反射光谱(UV-vis DRS)和固体荧光光谱(PL)等方法对其进行表征。在可见光(γ>420 nm)照射下,通过对水溶液中罗丹明B,甲基橙和苯酚的降解效果来评价溴氧化铋的光催化活性。结果表明,由于B9提高了对可见光的吸收以及电子-空穴对的分离效率,B9具有最好的光催化活性,同时探索水热pH值对制备溴氧化铋的形貌和组成的影响,并说明了不同水热pH值下溴氧化铋的合成过程。
  • Figure  1  XRD patterns of the synthesized samples

    Figure  2  Schematic synthesis process of bismuth oxybromide

    Figure  3  Survey XPS spectrum (a), high-resolution XPS spectra of Bi 4f (b), Br 3d (c) and O 1s (d) for samples

    Figure  4  SEM images of pure BiOBr (a), B9 (b), B11 (c) and B13 (d)

    Figure  5  UV-vis diffuse reflectance spectra (a) and plot of (αhv)1/2 versus photon energy (hv) curves of synthesized samples (b)

    Figure  6  Band structure alignments for the synthesized samples

    Figure  7  PL spectra of synthesized samples

    Figure  8  Photocatalytic property of synthesized samples in degradation of RhB(a); photodegradation of MO and phenol over B9 (b)

    Figure  9  Kinetic curves for the RhB degradation over synthesized samples

    Figure  10  Photocatalytic degradation of RhB over B9 in the presence of different radicals scavengers

    Figure  11  Proposed mechanism for the degradation of RhB over synthesized samples

  • [1] WANG H, YONG D Y, CHEN S C, JIANG S L, ZHANG X D, SHAO W, ZHANG Q, YAN W S, PAN B C, XIE Y. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation[J]. J Am Chem Soc, 2018, 140(5):1760-1766. doi: 10.1021/jacs.7b10997
    [2] YU X, SHI J J, WANG L, WANG W T, BIAN J J, FENG L J, LI C H. A novel AuNPs-loaded MoS2/RGO composite for efficient hydrogen evolution under visible light[J]. Mater Lett, 2016, 182:125-128. doi: 10.1016/j.matlet.2016.06.095
    [3] YUE D T, ZHANG T Y, KAN M, QIAN X F, ZHAO Y X. Highly photocatalytic active thiomolybdate [Mo3S13] 2-clusters/BiOBr nanocomposite with enhanced sulfur tolerance[J]. Appl Catal B:Environ, 2016, 183:1-7. doi: 10.1016/j.apcatb.2015.10.020
    [4] ZHAO K, ZHANG L Z, WANG J J, LI Q X, HE W W, YIN J J. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets[J]. J Am Chem Soc, 2013, 135(42):15750-15753. doi: 10.1021/ja4092903
    [5] LIAO C X, MA Z J, CHEN X F, HE X, QIU J R. Controlled synthesis of bismuth oxyiodide toward optimization ofphotocatalytic performance[J]. Appl Surf Sci, 2016, 387:1247-1256. doi: 10.1016/j.apsusc.2016.06.140
    [6] GUO W, QIN Q, GENG L, WANG D, GUO Y H, YANG Y X. Morphology-controlled preparation and plasmon-enhanced photocatalytic activity of Pt-BiOBr heterostructures[J]. J Hazard Mater, 2016, 308:374-385. doi: 10.1016/j.jhazmat.2016.01.077
    [7] LIU X Q, CAI L. Novel indirect Z-scheme photocatalyst of Ag nanoparticles and polymer polypyrrole co-modified BiOBr for photocatalytic decomposition of organic pollutants[J]. Appl Surf Sci, 2018, 445:242-254. doi: 10.1016/j.apsusc.2018.03.178
    [8] YU Z Y, DETLEF B, RALF D, SONG L, LU L Q. Photocatalytic degradation of azo dyes by BiOX(X=Cl, Br)[J]. J Mol Catal A:Chem, 2012, 365:1-7. doi: 10.1016/j.molcata.2012.07.001
    [9] XU J, LI L, GUO C S, ZHANG Y, WANG S F. Removal of benzotriazole from solution by BiOBr photocatalysis under simulated solar irradiation[J]. Chem Eng J, 2013, 221:230-237. doi: 10.1016/j.cej.2013.01.081
    [10] YE L Q, SU Y R, JIN X L, XIE H Q, CAO F P, GUO Z. Which affect the photoreactivity of BiOBr single-crystalline nanosheets with different hydrothermal pH value:Size or facet?[J]. Appl Surf Sci, 2014, 311:585-863. http://d.old.wanfangdata.com.cn/Periodical/wjclxb201608011
    [11] YU H G, LRIE H S, HASHIMOTO K. Conduction band energy level control of titanium dioxide:Toward an efficient visible-light-sensitive photocatalyst[J]. J Am Chem Soc, 2010, 132:6898-6899. doi: 10.1021/ja101714s
    [12] WANG H T, SHI M S, YANG H F, CHANG N, ZHANG H, LIU Y P, LU M C, AO D, CHU D Q. Template-free synthesis of nanosliced BiOBr hollow microspheres with high surface area and efficient photocatalytic activity[J]. Mater Lett, 2018, 222:164-167. doi: 10.1016/j.matlet.2018.03.179
    [13] DI J, XIA J X, JI M X, WANG B, YIN S, ZHANG Q, CHEN Z G, LI H M. Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight[J]. Appl Catal B:Environ, 2016, 183:254-262. doi: 10.1016/j.apcatb.2015.10.036
    [14] MENG X C, LI Z Z, CHEN J, XIE H W, ZHANG Z S. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles[J]. Appl Surf Sci, 2018, 433:76-87. doi: 10.1016/j.apsusc.2017.09.103
    [15] LI R P, REN H J, MA W H, HONG S M, WU L, HUANG Y P. Synthesis of BiOBr microspheres with ethanol as self-template and solvent with controllable morphology and photocatalytic activity[J]. Catal Commun, 2018, 106:1-5. doi: 10.1016/j.catcom.2017.11.015
    [16] LI H P, HU T X, LI J Q, SONG S, DU N, ZHANG R J, HOU W G. Thickness-dependent photocatalytic activity of bismuth oxybromide nanosheets with highly exposed (010) facets[J]. Appl Catal B:Environ, 2016, 182:431-438. doi: 10.1016/j.apcatb.2015.09.050
    [17] LU L, ZHOU M Y, YIN L, ZHOU G W, JIANG T, WAN X K, SHI H X. Tuning the physicochemical property of BiOBr via pH adjustment:Towards an efficient photocatalyst for degradation of bisphenol A[J]. J Mol Catal A:Chem, 2016, 423:379-385. doi: 10.1016/j.molcata.2016.07.017
    [18] WANG L, JIA T F, LI C H, FENG L J. Hydrothermal synthesis of BiOBr/semi-coke composite as anemerging photo-catalyst for nitrogen monoxide oxidation undervisible light[J]. Catal Today, 2016, 264:257-260. doi: 10.1016/j.cattod.2015.07.008
    [19] WANG J L, YU Y, ZHANG L Z. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4 Br under visible light[J]. Appl Catal B:Environ, 2013, 136/137:112-211. doi: 10.1016/j.apcatb.2013.02.009
    [20] LIU X Z, JIANG X L, CHEN Z Q, YU J X, HE Y M. Preparation of Bi3O4 Br/BiOCl composite via ion-etching method and its excellent photocatalytic activity[J]. Mater Lett, 2018, 210:194-198. doi: 10.1016/j.matlet.2017.08.134
    [21] YU X, WU P W, QI C X, SHI J J, FENG L J, LI C H, WANG L. Ternary-component reduced graphene oxide aerogel constructed by g- C 3N4/BiOBr heterojunction and graphene oxide with enhanced photocatalytic performance[J]. J Alloys Compd, 2017, 729:162-170. doi: 10.1016/j.jallcom.2017.09.175
    [22] HU T P, YANG Y, DAI K, ZHANG J F, LIANG C H. A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation[J]. Appl Surf Sci, 2018, 456:473-481. doi: 10.1016/j.apsusc.2018.06.186
    [23] YU X, SHI J J, FENG L J, LI C H, WANG L. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Appl Surf Sci, 2017, 396:1775-1782. doi: 10.1016/j.apsusc.2016.11.219
    [24] HAN Q F, ZHANG K K, ZHANG J, GONG S, WANG X, ZHU J W. Effect of the counter ions on composition and morphology of bismuth oxyhalides and their photocatalytic performance[J]. Chem Eng J, 2016, 299:217-226. doi: 10.1016/j.cej.2016.04.048
  • 加载中
图(12)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  40
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-12
  • 修回日期:  2019-04-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-05-10

目录

    /

    返回文章
    返回