留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铈源对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响

王丽宝 王东哲 张磊 庆绍军 韩蛟 张财顺 高志贤 张海娟 冯旭浩

王丽宝, 王东哲, 张磊, 庆绍军, 韩蛟, 张财顺, 高志贤, 张海娟, 冯旭浩. 铈源对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报(中英文), 2020, 48(7): 852-859.
引用本文: 王丽宝, 王东哲, 张磊, 庆绍军, 韩蛟, 张财顺, 高志贤, 张海娟, 冯旭浩. 铈源对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报(中英文), 2020, 48(7): 852-859.
WANG Li-bao, WANG Dong-zhe, ZHANG Lei, QING Shao-jun, HAN Jiao, ZHANG Cai-shun, GAO Zhi-xian, ZHANG Hai-juan, FENG Xu-hao. Influence of cerium sources on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 852-859.
Citation: WANG Li-bao, WANG Dong-zhe, ZHANG Lei, QING Shao-jun, HAN Jiao, ZHANG Cai-shun, GAO Zhi-xian, ZHANG Hai-juan, FENG Xu-hao. Influence of cerium sources on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 852-859.

铈源对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响

基金项目: 

国家自然科学基金 21376237

辽宁省教育厅科学研究经费项目 L2019038

辽宁省自然科学基金 2019-MS-221

详细信息
  • 中图分类号: O643

Influence of cerium sources on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol

Funds: 

the National Natural Science Foundation of China 21376237

Scientific Research Funds Project of Liaoning Education Department L2019038

the Project of the National Science Fund in Liaoning Province 2019-MS-221

More Information
  • 摘要: 采用沉淀法合成了CeO2载体,再经浸渍法负载活性组分得到CuO/CeO2催化材料,探究了铈源(Ce(NO33·6H2O、CeCl3·6H2O、Ce(NH42(NO36、Ce(SO42·4H2O)对CuO/CeO2催化性能的影响。通过采用XRD、SEM、N2O滴定、BET和H2-TPR等表征手段对催化材料的结构和性质研究发现,四种铈源合成的CuO/CeO2催化材料在Cu比表面积、还原性能以及活性组分和载体间的相互作用方面存在着明显差别。其中,由Ce(NO33·6H2O合成的CuO/CeO2催化材料的Cu比表面积较大,CuO还原温度较低,CeO2载体与CuO之间相互作用较强,在甲醇水蒸气重整反应过程中,表现出较佳的催化活性,在反应温度为553 K,水醇比n(H2O)/n(MeOH)为1.2,甲醇水蒸气气体空速(GHSV)为1760 h-1时,甲醇的转化率为100%,重整气中CO摩尔含量为0.84%。
  • 图  1  CeO2-A纳米材料的SEM照片和表面粒径直方图

    Figure  1  Surface particle size histogram and SEM image of the CeO2-A nano-materials

    图  2  CeO2-B纳米材料的SEM照片和表面粒径直方图

    Figure  2  Surface particle size histogram and SEM image of the CeO2-B nano-materials

    图  3  CeO2-C纳米材料的SEM照片和表面粒径直方图

    Figure  3  Surface particle size histogram and SEM image of the CeO2-C nano-materials

    图  4  CeO2-D纳米材料的SEM照片和表面粒径直方图

    Figure  4  Surface particle size histogram and SEM image of the CeO2-D nano-materials

    图  5  CeO2-X纳米材料的XRD谱图

    Figure  5  XRD patterns of the CeO2-X nano-materials

    a: CeO2-A; b: CeO2-B; c: CeO2-C; d: CeO2-D

    图  6  不同铈源合成催化剂的XRD谱图

    Figure  6  XRD patterns of the catalysts synthesized from different cerium sources

    a: Cu-Ce-A; b: Cu-Ce-B; c: Cu-Ce-C; d: Cu-Ce-D

    图  7  不同铈源合成催化剂的H2-TPR谱图

    Figure  7  H2-TPR profiles of the catalysts synthesized from different cerium sources

    a: Cu-Ce-A; b: Cu-Ce-B; c: Cu-Ce-C; d: Cu-Ce-D

    图  8  催化活性与重整温度的关系

    Figure  8  Relationship between catalytic activity and reforming temperature

    (reaction conditions: n(H2O)/n(MeOH)=1.2:1, GHSV=1760h-1)
    a: Cu-Ce-A; b: Cu-Ce-B; c: Cu-Ce-C; d: Cu-Ce-D; e: equil

    图  9  不同温度下重整气中的CO摩尔含量

    Figure  9  CO molar content in reformed gas at different temperatures

    (reaction conditions: n(H2O)/n(MeOH)=1.2:1, GHSV=1760h-1)
    a: Cu-Ce-A; b: Cu-Ce-B; c: Cu-Ce-C; d: Cu-Ce-D; e: equil

    表  1  催化剂表面的物化性质和产氢速率

    Table  1  Physical properties of the synthesized catalysts and hydrogen production rate in methanol steam reforming

    Catalyst ABET
    /(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Cu dispersion /% Cu surface area
    A /(m2·g-1)
    H2 production ratea
    /(μmol·kg-1·s-1)
    CeO2-A 37.4 0.10 - - -
    CeO2-B 59.1 0.15 - - -
    CeO2-C 96.9 0.04 - - -
    CeO2-D 110.3 0.05 - - -
    Cu-Ce-A 21.9 0.09 15 8.8 16941
    Cu-Ce-B 54.6 0.14 13 7.2 14753
    Cu-Ce-C 81.6 0.03 8 4.4 9329
    Cu-Ce-D 83.1 0.04 2 1.2 7874
    aH2 production rate was calculated when temperature is 553K, n(H2O)/n(MeOH)=1.2:1, GHSV=1760h-1
    下载: 导出CSV

    表  2  催化剂还原峰位置

    Table  2  Reduction peak position of the catalysts

    Catalyst Peak position t/℃
    peak 1 peak 2
    Cu-Ce-A 178 222
    Cu-Ce-B 182 253
    Cu-Ce-C 195 227
    Cu-Ce-D 200 223
    下载: 导出CSV

    表  3  催化材料的甲醇转化率和CO摩尔含量对比

    Table  3  Comparison of methanol conversion and CO molar content

    Catalyst Reaction
    temperature T/K
    n(H2O)/n(MeOH) GHSV
    /h-1
    Methanol
    conversion /%
    CO molar
    content /%
    Cu-Ce-A 553 1.2 1760 100 0.84
    10%Cu/γ-Al@MMO[3] 573 1.2 1760 100 0.92
    Cu35Zn35Zr30[9] 523 1.3 1757 93.2 0.22
    Cu/Zn/Al/Fe0.2 [25] 533 1.0 1190 95.2 1.37
    CuO/ZnO[26] 533 1.3 3600 95.5 0.54
    下载: 导出CSV
  • [1] 苏石龙, 张磊, 张艳, 雷俊腾, 桂建舟, 刘丹, 刘道胜, 潘立卫.千瓦级PEMFC甲醇水蒸气重整制氢过程热力学模拟[J].石油化工高等学校学报, 2015, 28(2):19-25. doi: 10.3969/j.issn.1006-396X.2015.02.004

    SU Shi-long, ZHANG Lei, ZHANG Yan, LEI Jun-teng, GUI Jian-zhou, LIU Dan, LIU Dao-sheng, PAN Li-wei. Thermodynamic simulation for hydrogen production in the methanol steam reforming system of kilowatt PEMFC[J]. J Petrochem Univ, 2015, 28(2):19-25. doi: 10.3969/j.issn.1006-396X.2015.02.004
    [2] YANG S C, SU W N, LIN S D, RICK J, HWANG B J. Preparation of highly dispersed catalytic Cu from rod-like CuO-CeO2 mixed metal oxides:Suitable for applications in high performance methanol steam reforming[J]. Catal Sci Technol, 2012, 2(4):807-812. doi: 10.1039/c2cy00330a
    [3] HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method onγ -Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017, 42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229
    [4] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053
    [5] LIU N, YUAN Z S, WANG C W, WANG S D, ZHANG C X, WANG S J. The role of CeO2-ZrO2 as support in the ZnO-ZnCr2O4 catalysts for autothermal reforming of methanol[J]. Fuel Process Technol, 2008, 89(6):574-581. doi: 10.1016/j.fuproc.2007.11.029
    [6] PATEL S, PANT K K. Selective production of hydrogen via oxidative steam reforming of methanol using Cu-Zn-Ce-Al oxide catalysts[J]. Chem Eng Sci, 2007, 62(18/20):5436-5443. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c3881db91f418532b85f2cd5f55273fb
    [7] HAO C, ANDOLINA C M, LI J, CURNAN M T, SAIDI W A, ZHOU G W, YANG J C, VESER G. Dependence of H2 and CO2 selectivity on Cu oxidation state during partial oxidation of methanol on Cu/ZnO[J]. Appl Catal A:Gen, 2018, 556:64-72. doi: 10.1016/j.apcata.2018.02.028
    [8] MA Y F, GUAN G Q, PHANTHONG P, LI X M, CAO J, HAO X G, WANG Z D, ABUDULA A. Steam reforming of methanol for hydrogen production over nanostructured wire-like molybdenum carbide catalyst[J]. Int J Hydrogen Energy, 2014, 39(33):18803-18811. doi: 10.1016/j.ijhydene.2014.09.062
    [9] 李永峰, 林维明, 余林.两种甲醇水蒸气重整制氢催化剂的研究[J].燃料化学学报, 2004, 32(5):106-110. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract16649.shtml

    LI Yong-feng, LIN Wei-ming, YU Lin. Study on two hydrogen production catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2004, 32(5):106-110. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract16649.shtml
    [10] 刘玉娟, 许骥, 佟宇飞, 张娜, 张磊, 刘道胜, 韩蛟, 张财顺.氧化铈纳米材料合成方法的研究进展[J].辽宁石油化工大学学报, 2017, 37(5):8-12. doi: 10.3969/j.issn.1672-6952.2017.05.002

    LIU Yu-juan, XU Ji, TONG Yu-fei, ZHANG Na, ZHANG Lei, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Progress in research of the synthesis methods of nanometer ceria[J]. J Liaoning Shihua Univ, 2017, 37(5):8-12. doi: 10.3969/j.issn.1672-6952.2017.05.002
    [11] LIU Y, HAYAKAWA T, TSUNODA T, SUZUKI K, HAMAKAWA S, MURATA K, NSHIOZAKI R, ISHII T, KUMAGAI M. Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts[J]. Top Catal, 2003, 22(3/4):205-213. doi: 10.1023/A:1023519802373
    [12] SUN C W, LI H, ZHANG H R, WANG Z X, CHEN L Q. Controlled synthesis of CeO2 nanorods by a solvothermal method[J]. Nanotechnol, 2005, 16(9):1454-1463. doi: 10.1088/0957-4484/16/9/006
    [13] ZHANG C Y, CHU W, CHEN F, LI L, JIANG R Y, YAN J L. Effects of cerium precursors on surface properties of mesoporous CeMnOx catalysts for toluene combustion[J]. J Rare Earths, 2019, 38(1):70-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxtxb-e202001010
    [14] 刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺.载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J].燃料化学学报, 2018, 46(8):992-999. doi: 10.3969/j.issn.0253-2409.2018.08.011

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(8):992-999. doi: 10.3969/j.issn.0253-2409.2018.08.011
    [15] 杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭.稀土掺杂改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(2):179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(2):179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007
    [16] YANG S Q, ZHOU F, LIU Y J, ZHANG L, CHEN Y, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 44(14):7252-7261. doi: 10.1016/j.ijhydene.2019.01.254
    [17] ZHANG Y J, CHEN C Q, ZHANG Y Y, LIN Q, LOU B Y, ZHENG G C, ZHENG Q. Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction[J]. J Fuel Chem Technol, 2017, 45(9):1137-1149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201709015
    [18] ZHANG Y J, CHEN C Q, LIN X Y, LI D L, CHEN X H, ZHAN Y Y, ZHENG Q. CuO/ZrO2 catalysts for water-gas shift reaction:Nature of catalytically active copper species[J]. Int J Hydrogen Energy, 2014, 39(8):3746-3754. doi: 10.1016/j.ijhydene.2013.12.161
    [19] XIE H M, DU Q X, LI H, ZHOU G L, CHEN S M, JIAO Z J, REN J M. Catalytic combustion of volatile aromatic compounds over CuO-CeO2 catalyst[J]. Korean J Chem Eng, 2017, 34(7):1944-1951. doi: 10.1007/s11814-017-0111-4
    [20] BERA P, PRIOLKAR K R, SARODE P R, HEGDE M S, EMURA S, KUMASHIRO R, LALLA N P. Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques:Formation of a Ce1-x CuxO2-δ solid solution[J]. Chem Mater, 2002, 14(8):3591-3601. doi: 10.1021/cm0201706
    [21] AVGOUROPOULOS G, IOANNIDES T, MATRALIS H. Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO[J]. Appl Catal B:Environ, 2005, 56(1/2):87-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3887d474fb479182a25d534d11f5c3ba
    [22] LUO M F, ZHONG Y J, YUAN X X, ZHENG X M. TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation[J]. Appl Catal A:Gen, 1997, 162(1):121-131. http://www.ingentaconnect.com/content/els/0926860x/1997/00000162/00000001/art00089
    [23] 张磊, 潘立卫, 倪长军, 孙天军, 赵生生, 王树东, 胡永康, 王安杰.沉淀温度对CuO/ZnO/CeO2/ZrO2甲醇水蒸气重整制氢催化剂性能的影响[J].催化学报, 2012, 33(12):1958-1964. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201212012

    ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie. Effect of precipitation temperature on the performance of CuO/ZnO/CeO2/ZrO2 catalyst for methanol steam reforming[J].Chin J Catal, 2012, 33(12):1958-1964. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201212012
    [24] 刘玉娟, 王东哲, 张磊, 白金, 陈琳, 刘道胜. CeO2形貌对甲醇水蒸汽重整CuO/CeO2催化剂的影响[J].精细化工, 2018, 35(12):71-77+112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxhg201812011

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, BAI Jin, CHEN Lin, LIU Dao-sheng. Effect of CeO2 morphology on CuO/CeO2 catalyst for methanol steam reforming[J]. Fine Chem, 2018, 35(12):71-77+112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxhg201812011
    [25] 赵红霞, 李永红, 杨成, 王秀芝, 任杰, 孙予罕. Fe改性工业Cu/Zn/Al催化剂上甲醇水蒸气重整反应制氢的研究[J].燃料化学学报, 2001, 29:137-139. doi: 10.3969/j.issn.0253-2409.2001.z1.043

    ZHAO Hong-xia, LI Yong-hong, YANG Cheng, WANG Xiu-zhi, REN Jie, SUN Yu-han. Hydrogen production by steam reforming of methanol on Fe modified Cu/Zn/Al catalysts[J]. J Fuel Chem Technol, 2001, 29:137-139. doi: 10.3969/j.issn.0253-2409.2001.z1.043
    [26] 王路存, 刘永梅, 曹勇, 吴贵升, 姚成漳, 戴维林, 贺鹤勇, 范康年.草酸盐固相化学法制备高性能Cu/ZnO甲醇水蒸气重整催化剂[J].化学学报, 2007, 65(2):173-176. doi: 10.3321/j.issn:0567-7351.2007.02.016

    WANG Lu-cun, LIU Yong-mei, CAO Yong, WU Gui-sheng, YAO Cheng-zhang, DAI Wei-lin, HE He-yong, FAN Kang-nian. Preparation of high performance by oxalate solid phase chemical Cu/ZnO methanol steam reforming catalyst[J]. Acta Chim Sin, 2007, 65(2):173-176. doi: 10.3321/j.issn:0567-7351.2007.02.016
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  64
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 修回日期:  2020-07-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回